
GHOSTS ARE SCARCE
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In recent years P. C. Hammer's problem [8] of determining a convex body from
its 'X-ray pictures' was investigated by Gardner and McMullen [4], Gardner [3],
Falconer [2] and Volcic [15]. An earlier result is due to Giering [5].

An X-ray picture of a convex body in a direction may be identified with its Steiner
symmetral in that direction. Some of these papers consider X-ray pictures taken from
points not on the line at infinity, but here we are not concerned with that situation.

Gardner and McMullen proved that there exist four directions such that the
corresponding X-ray pictures distinguish between all convex bodies, and that no three
directions can do this. Giering proved that, given a plane convex body K, there exist
three directions depending on K, such that the corresponding X-ray pictures
distinguish K from any other convex body. He has also shown that two directions are
in general not enough.

Convex bodies with the same X-ray pictures as a given one were called 'ghosts'
in [14], in analogy with the ghost densities from computerized tomography [12].

It should be remembered that in the fundamental case of parallel rays from two
orthogonal directions, besides a few triangular or quadrangular examples by Giering
[6] and a rather obvious construction which basically interchanges two diagonally
opposite, symmetrical pieces with two other diagonally opposite congruent pieces
(diagonals of a rectangle), no deeper insight into the soul of a ghost of a convex body
has been won.

We are—as a consequence—far away from being able to characterize convex
are not ghosts! (Note the equivalence between having and being a ghost!) Thus we

In this situation, the question about the generic behaviour of convex bodies with
regard to their ghosts appears interesting, but looks at a first glance, in view of the
lack of knowledge described above, rather hopeless. However, in this paper we
establish the validity of the (more comfortable?) assertion that most convex bodies
are not ghosts! (Note the equivalence between having and being a ghost!) Thus we
confirm a conjecture of the first author, motivated by the symmetries described above
and also present in his examples from [14].

It is clear that the orthogonality of the two considered directions is unessential,
because of the afrlne character of our problem. When we state it we do so just to fix
the ideas.

As a main open problem there remains the characterization of those convex
bodies which are uniquely determined by two X-ray pictures. The analogous problem
for measurable sets has been solved by Lorentz [11].

The space # of all convex curves in 1R2, like the space & of all convex bodies in
Ud, equipped with the Hausdorff distance S is a Baire space. 'Most ' means 'all, except
those in a set of first category'. For a survey on properties of most convex bodies, see
[16].
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FIG. 1

The existence of a ghost is very much related to the existence of inscribed closed
broken lines whose line-segments are parallel to the axes. The importance of these
broken lines was first noted by Giering.

Indeed, if a convex body B has a ghost B' such that the component F of B\B' lies
as in Figure 1, then B\B' and B'\B have finitely many components of the same area
as F (possibly among many, even infinitely many other components) and B must have
the depicted inscribed closed broken lines. We say that a convex body with such an
inscribed closed broken line is a ghost-candidate.

This is not the only reason why the investigation of convex bodies with closed
broken lines of the type described above is of interest. Consider the Dirichlet problem
for the hyperbolic differential equation

that is, the problem of determining its solutions from given values on a closed curve
C (see Hadamard [7]), that we shall suppose strictly convex. For any xeC, let SxeC
be the (other, if possible) point with the same abscissa as x and Txe C be the (other,
if possible) point with the same ordinate as Sx. The transformation T is a
homeomorphism and there is a close connection between the Dirichlet problem for
C and the topological properties of T, as John has shown [9].

It is easily seen that T is an even homeomorphism (that is, it is orientation-
preserving on C). A point xe C is called periodic if it is a fixed point of Tn for some
n (the smallest such n is the period of x). The set V(x) = {Tx : n = 0,1,2,...} is called
orbit of x = T°x. There are the following possibilities.

I All points of C are periodic (T is periodic).
II C contains periodic and non-periodic points (T is semiperiodic).

III No point of C is periodic and no orbit is dense in C (T is intransitive).
IV No point of C is periodic and some orbit is dense in C (T is transitive).
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Thus, the existence of periodic points makes out of conv C a ghost-candidate, to
use again the previous wording.

Many ghost-candidates

We shall see here that in most cases we have just one of the four types of
homeomorphisms T, namely T must be semiperiodic. The generic situation is even
more precisely described by the following theorem.

THEOREM 1. On most convex curves C, there is a non-empty, nowhere dense set of
periodic points.

Proof. First of all, it suffices to prove the theorem in the space # * of all smooth
and strictly convex curves, because #* is residual in # , as first proved by Klee [10].
Let ja/ <= <#* be the set of all smooth and strictly convex curves without any periodic
points. We show that #f is nowhere dense in <€*. Let 0 c <g* be open and choose

sr

FIG. 2

Ce (9 of class C2. Then Tis not intransitive (see Denjoy [1, p. 372] and John [9, p. 147]).
If Cesf, then T is transitive and it is well known that all points of C have dense
orbits. Let u and v be the points of C of smallest, respectively largest ordinate.
Consider the horizontal line L meeting C, at distance e > 0 from v. For e small
enough, no modification of C above L preserving smoothness and strict convexity
throws Cout of 0. Let Tnu be the first point of the orbit of u which lies above L. Also,
let y, z e C be points of equal ordinates, chosen so close to u that Tny and Tnz both
lie above L. Let w be the point having the same abscissa as STn~lz and the same
ordinate as Tny. By interchanging y and z if necessary we can arrange that
H> e conv C. If w $ C, modify C above L so as to contain STn~ly and w. Then y becomes
a periodic point.

Thus, in any case, there is a curve Ce 0 with a periodic point ye C of period, say,
m. We may also suppose that y is close to the point of C with minimal ordinate and
V(y) does not contain any one of the four points which have one coordinate maximal
or minimal.

Let D e # and xeD. Consider the point J{x,D) of the same abscissa as x and of
the same ordinate as Tmx, where T is taken with respect to D, of course. It is easily
seen t h a t / i s continuous.
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Now consider again our curve C and point y. Clearly, y = f{y, C). Choose a point
y'eC\(V(y) U SV(y)). There are three possible cases:

( l ) / ( / ,C)*convC,

(3) /(/ ,C)eintconvC.

We consider here the first case only; the remaining two can be treated in a
similar way. Let Y a U2 be a neighbourhood of y such that Py'$Y, ST'y'fY
(/ = 0, l,...,m), V(y)f)Y={y} and SV(y)()Y=0. (Observe that, since V{y)
does not contain the four points of C with a coordinate maximal or minimal,
V(y) fl SV{y) = 0.) Now consider CeO such that C and C coincide outside of Y
and ^eintconv C. Let y" be the point of C with the same abscissa as y, but smaller
ordinate. Clearly, j{y", C) = y. Thus/( / , C)£convC and J{y", C")eintconvC".

There exists a neighbourhood Jf c (9 of C and neighbourhoods F of y' and 7"
of y" such that for every curve De^V, DftY' and £> n Y" are non-empty and, for
arbitrary t'eDO Y and /"e£>n Y", J{t',D) $convD and J{t",D) eintconvZ). This
follows from the continuity of/, which also yields the existence of a third point / such
that j{t, D) e D. Thus, every curve in Jf has a periodic point. Hence ,tf is nowhere
dense.

Now let %, be the set of all curves in <$* containing an arc A of length n~l whose
points are all periodic and whose supporting lines at the points of relint/4 are neither
vertical nor horizontal. We show that <€n is nowhere dense. Clearly, #„ is closed in (€*.
Let Ce%, and A c= C be an arc as mentioned above. It is well known that all periodic
points have the same period, say m. Let °U be a neighbourhood of C in <€*. Also, let
v be close to the midpoint of A and such that V(y) 0 SV(y) = 0 . Let Y c IR2 be a
neighbourhood of y disjoint from (V(y)0 SV(y))\{y}. As before, we can modify C
inside Y and obtain a curve C ' e t such that some point y'eC 0 Y does not have
period m, hence/ is not periodic. By repeating this procedure (finitely, but sufficiently
many, times) with other arcs of length n~l, we eventually find a curve which belongs
to °U\€n. Thus, the complement of %t is dense in #*, whence on most curves in (€*
the set of periodic points is nowhere dense. Since ,tf is nowhere dense, the theorem
is completely proved.

We remark that all convex curves of types I (Aperiodic), III (Tintransitive) and
IV (T transitive) form a nowhere dense subset of (€. The argument for the curves of
type I parallels that about %t in the above proof, while the curves of type III or IV
constitute the set s4.

This theorem has as a consequence that the number T associated to T, introduced
by van Kampen in [13], is rational for most C.

As another consequence, we see that we are faced with many ghost-candidates.
Are there in fact many ghosts?

A lemma

We shall make use of the following simple lemma. Recall that & is the space of
all convex bodies, that is, compact convex sets with interior points, in IRrf.

LEMMA. If&~ is a topological space, @l' is a closed subspace of ^ andf: 38' -> 3~
is continuous, then the set

{Be@':3B'ef-\J{B)) with B' * B)
is an F,.
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Proof. Since the above set is equal to (J*-i^n> where

&n = {Be@'\lB'ef-\j{B)) with inradius at least /T1 and n'1 ^ S(B,B') < «},

it suffices to show that every $bn is closed. If Bi -> B with Bte^Sn and fie^, then there
is some B^ef^iJiBJ) with inradius at least n~l, satisfying

rC1 ^ d{Bt, B[) ^ n

for every index /. Clearly there is some ball Ka W1 including \J?L1Bt. Then the
concentric ball obtained by adding n to the radius of K includes (J^ i^ i - By
Blaschke's selection theorem, some subsequence {B\ }™_x of {B'$?_x converges, say to
a compact convex set B'. It follows immediately that B' has inradius at least n'1,

) )
j-*ao j—co

and
n~* ^ d(B, B') ^ n,

whence Be$ln.

Scarce ghosts

We start with a planar result.
Let Sn(K) and SV(K) be the Steiner symmetrals of K in the horizontal and—

respectively—vertical direction.

PROPOSITION. Most planar convex bodies are not ghosts.

Proof. The function which associates to each convex body in 38 its Steiner
symmetral is known to be continuous. Thus, by the lemma, the set of all ghosts in $8
is an Fa. It remains to show that the family of all convex bodies without ghosts is dense
in 38. Let KE$8. Suppose without loss of generality that some point s(K) of K of
smallest abscissa has an ordinate not less than that of some point l(K) of largest
abscissa. Then K can arbitrarily well be approximated by a convex body K with
unique s(K) and l(K'), such that the ordinate of s(K') is larger than that of l(K), the
portion P of bdK above the horizontal line L1 through s(K') is smooth and strictly
convex, and (bdK')\P is a polygonal line.

We claim that K has no ghost. Suppose indeed that K" has the same Steiner
symmetrals as K.

Let H = bdSh(K') = bdSh(K") and V = bdSv(K') = bdSv(K"). Since His polygonal
below Lx and V is strictly convex on the left-hand side of the vertical line L2 through
Lx n (bdK')\{s(K')}, s{K") does not lie below s(K').

Suppose that s(K") lies above s(K'). Then the smoothness of H above Lx implies
the smoothness of bdK' at s(K"), but this contradicts the non-smoothness of V at
s(Sv), which follows from the non-smoothness of bd^T' at s(K'). Hence s(K') = s(K").
It follows that Lx n bdA:' = Lx n bdK". If P <fc bdK", then there is an arc/4' c P and
an arc A" a bdK" with the same endpoints x,y and no other points in common.

Since SV(K) = SV(K"), there are two points x*,y*e(bdK') f\(bdK") below x,y
respectively. The arcs B' <= bdK and B" <= bdK" between x* and y* below L must be
polygonal, H being polygonal below Lx.

If/K-,/K.:/-> U are two concave functions whose graphs are A', A" respectively
and gK;gK-:I^> U are two convex functions whose graphs are B',B" respectively,
then fK. —fK. has no root in the interior of /,

JK' JK" =
 SK' Sh"
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FIG. 3

and the common values at the endpoints of/are both zero. But/r—fK. is smooth and
gK—gK- is piecewise linear; this is impossible for non-identical fK-,fK-.

Hence P c b&K". From SV(K') = SV(K"), it follows that K and K" coincide on the
left-hand side of L2; Sh{K') = Sh(K") eventually implies that K = K". The proposition
is proved.

This result will now be generalized to higher dimensions. Thereby we do not
modify the number of directions along which Steiner symmetrals are considered: let
Sh and Sv continue to mean the Steiner symmetrizations in two fixed orthogonal
directions, called horizontal and vertical.

THEOREM 2. In Ud(d ^ 2), most convex bodies are not ghosts.

Proof. For d = 2, the theorem coincides with the previous proposition. Thus let
d ^ 3 and consider a 2-dimensional flat n <= Ud parallel to the horizontal and vertical
directions.

Let X be the space of all compact sets in Ud endowed with the Hausdorff metric.
Also, let s/ = {Be@:BnTl = 0 } a n d ^ = {Be@\s/:Bn n is not a ghost}. We prove
that ^ n = si U Q> is residual in @.

Since BoTl depends continuously on B in g&\rf and the Steiner symmetrizations
are continuous, the function/: &\s/ -+X* associating (Sh(B n n), SV(B n FI)) to B is
also continuous. Since S8\st is closed in 08, we may apply the lemma and obtain that
$ \ ^ n is an £-set.

Thus, it remains to prove that 08n is dense in 08. To this effect, let 0 <=. $8 be open.
If 0 (1 si # 0 , then we already have 0 (1 $ n ^ 0 . If 0 n s4 - 0, then we may choose
a smooth convex body Be (9 (the family of all smooth convex bodies is more than only
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dense: see [10, 17]). It is easily seen that n cuts B and therefore BO FI is smooth (in
n) . Take e > 0 such that S(B,B') < e implies that B'eO. Consider in n an open
convex set C => B 0 FT such that bdC is a polygon without any vertical edge and

3(B n n , C) < e.

We round up several corners of C in order to get a planar convex body C => B 0 U
of the type described in the proof of the preceding proposition, hence uniquely
determined by Sh(C) and SV(C). Then B' = conv (B \J C) belongs to 9, satisfies
3{B, B') < e, and therefore also belongs to (9.

Hence ^?n is residual in 31. Let {FI,}^ be a sequence of 2-flats parallel to FT, whose
union is dense in Ua. Then f)£,i&n- ls residual in &, which means that for most
BGSS, BO nt is not a ghost for any ieN for which B 0 l\t ^ 0 . Now, it easily follows that
most B are not ghosts, which proves the theorem.

On the frequency of ghosts

Besides being of first category we would like to know more about the set of all
ghosts. In this section we contribute a little to this problem; however, the orthogonal
directions of symmetrization will not be fixed in advance any more. For simplicity we
work in U2. With a more complicated but still elementary proof, the theorem can be
extended to higher dimensions.

THEOREM 3. There is a dense family 2F of convex bodies, each of which has
uncountably many ghosts in $F with respect to each one of two distinct pairs of
orthogonal directions.

Proof Let 0 c $b be open and consider K^sO with polygonal boundary. Let
coM(/T1) and ojm{K^) be the directions in which the width of Kx is maximal, respectively
minimal. By slightly modifying Kx if necessary, we obtain a convex body K2e0 with
polygonal boundary, such that coM(K2) and com{K2) are not orthogonal. Let aM bM be
the chord of K2 realizing the maximal width and let a'm b'm be a chord realizing the
minimal width. The two chords are not orthogonal. Clearly, aM and bM are vertices
of the boundary of K2 and no edge is orthogonal to a)^(K2). Choose am,bm$K2

such that a'mb'm c ambm and K3 = con\(K2 U {am,bm}) still belongs to 0. Consider
the two circles having aMbM and ambm as diameters. Choose on them four arcs
AM,BM,Am,Bm centred at aM,bM,am,bm respectively, all of length e > 0. For £ small
enough, all four arcs lie on the boundary of K4 — conv(A3 U AM U BM U Am u Bm) and
K4E0. For such an e, consider the sequences {amt}^lt {a'mi}£l5 {6mi}"ls #CJ£ i such
that amieAm, am(t+l) lies between ami and am, ami and a'mi are symmetric with respect
to the line A through am and bm, bmi and b'mi are symmetric with respect to A, ami and
bmi are symmetric with respect to the midpoint of ambm.

Consider the circle segments <xt, a't, fit, ft, defined as the convex hulls of the open
arcs amtam(t+1), a'mta'm(i+1), bmibm{i+1), b'mib'm(i+1) respectively. For every ie N we choose
either the pair cc(,ft or the pair v!vft and subtract them from Kv We do the same with
AM and BM. All these convex bodies lie in 0. We obtain in this way, as in [14], for some
fixed choice of circle segments on A^ and Z?v uncountably many convex bodies with
the same Steiner symmetrals in directions oim{K2) and com{K2)

L. For some fixed choice
on Am and Bm (and all possible choices on AM and BM) we obtain uncountably many
convex bodies with the same Steiner symmetrals in directions a)^(K2) and coM(K2)

L.
This completes the proof.
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We are indebted to a referee, who carefully improved the language style of the
paper and pointed out several inaccuracies which were initially contained in our
proofs.
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