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Introduction
After having investigated in [7] generic properties of compact starshaped sets in

Ud, we shall restrict here our attention to compact starshaped sets whose kernels
have positive dimension. While the main results in [7] are of a topological nature and
concern the whole sets, the theorems presented here describe, for kernels of
codimension 0 or 1, the local aspect of the boundaries and include, for kernels of
positive dimension less than d— 1, both types of statements.

Very recently, the description in [7] of typical compact starshaped sets in Ud was
continued and completed in [2].

The space S" of all compact starshaped sets in W1, endowed with the Hausdorff
metric A, being closed in the space of all compact sets, is a Baire space. Thus it makes
sense to speak about most, or typical, starshaped (always compact) sets, that is all,
except those in a set of first Baire category.

If we impose the condition that the kernels of the starshaped sets must include a
given convex compact set K, we get a subspace 3~K oi2T which is again a Baire space,
being closed in ST. The reason for the special interest in studying &~K is simple.
Suppose, for instance that K has interior points. Then the boundary of every set
belonging to 3~K is a surface homeomorphic to the boundary S^j of the unit ball B;
this is not guaranteed for sets belonging to $". The space Sf of all boundaries of sets
belonging to 3~K, equipped with the metric A, is homeomorphic to 9~K. Each member
of Sf will be called a starshaped surface. A starshaped surface which contains no line
segment will be called strictly starshaped.

For 4 c R", we shall use the notation

diam4 = sup | | * - j / | | , cA = {WxW^x-.xeAXiO}}.
x,yeA

The reader interested in Baire category results obtained in convexity may consult
[6]-

On most starshaped surfaces

Supposing, for simplicity, that B c K, every surface Se6f is determined in polar
coordinates (w,p((o)) by an 'associated' function p-Sd_1-^[l, oo), so that p(w)a)eS.
Since S is compact and B lies in the kernel of

[S] = {Xx:Ae[0,l],xeS},

p is a Lipschitz function. As such, it is differentiable a.e. This reminds us of convex
surfaces. The space of all convex surfaces is also a Baire space and most convex
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surfaces are everywhere differentiable and contain no line segments, as Klee[3]
proved. What do most starshaped surfaces look like ? It is proved in this section that
they also contain no line segments, but are not differentiable at most of their points.
Roughly speaking, most of their points do not ' see' more than K; on the other hand,
almost all points do 'see' more than K (but no flK with /? > 1).

Let Sey and xeS. Let y(x) be the solid angle under which x sees K, i.e.

y(*) = {Il2/-*ir (y-x):y =t= x,

and let S(x) be the solid angle of [8] at x, i.e.

S(x) = {\\y-x\\-1 (y-x):y * x, yx cz [S]},

yx denoting the line segment from y to x.
Also, for xe Rd, A c £d_j, e $s 0, put

(x,e) = conv ({x} \J(K+eB))

and, for a given function p, set

<^,e] = bd U <p((o)a),e].

THEOREM 1. Most surfaces from Sf are, strictly starshaped.

Proof. Let Sfn be the set of those surfaces in f? which contain a line segment of
length TO"1. We show that 5^ is nowhere dense.

yn is obviously closed in Sf. Let (9 be an open set in Sf and consider SeQ with
associated function p. Let e > 0 be chosen such that A($, S') < 2e implies S' e 0.

Consider ye(0,e) and

\x-y\\ =
ye[S)

Let Cx = int<a;,0]. I t is clearly possible to find a v such that, for any

diamCa.\([6'] + e5) < TO"1.

The family of open sets {Cx}xeS covers the compact set [5] + eZ? (see Figure 1). Hence
there is a finite set Av c Sr such that {Cx}xeA^ covers [£] + e5. We claim that, for v
small enough, the starshaped surface

s'w = bd u aX

xeA,

contains no line segment of length n 1. Indeed, every line segment in S'v belongs to
the boundary of some Cx and is disjoint from [S] + eB; thus it belongs to the
boundary of Ca.\([5

I] + e5) and therefore has length less than TO"1. Hence S',,eG)\Sfn.
Thus y\Sfn is dense and Sfn nowhere dense in $f. Since any surface in y containing
a line segment lies in UjLj^,, the conclusion of the theorem follows.

THEOREM 2. On most Se6f, for most points xeS, y{x) = S(x).

Proof. Let n be a natural number and

*»(*) = {\\y-x\\-\y-x): \\y-x\\ = n~\yx c [S]}.
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Fig. 1

Clearly 8(x) = U™_1<Jn(a;) and it is easily seen that 8n is upper semicontinuous.
First we prove that

En = {xeS:8n(x)\y(x) includes no disk of radius w"1}

is dense in S, for most SeSf.
Let Sfn be the family of all those surfaces S e Sf such that there exist disks Dx and

D2 on Sd_lt both of (angular) radius vT1, with the property that, for all coeDx,

It is an easy exercise to check that 6^n is closed in Sf. Let 0 be an open set in y
and let 8 e (9 have associated function p. Let e > 0 be chosen such that any element
of 5^ at Hausdorff distance at most e from S lies in 0. Let A be a finite set on Sa^
such that Sj = <4,0] satisfies A^.Sj) < e and Sd_j\A includes no disk of radius vT1.

Thus we have found a surface S1 e (9 such that for every disk D <=• ( S ^ with radius
rC1 there exists a point we A ()D, at which obviously

Pi being the function associated with Sx. This proves that the complement of S?n is
dense and S/"n is nowhere dense in Of.

Let y n be the family of all StSf such that En is dense in 8. For any surface
S<=Sf\Sfn there are disks D, D' cz 8d_x of radii mT1, n'1 {meN) such that, for all

Then Se^m a x ( m > n ) . It follows that if\^n c U^_,^m, whence most surfaces in Sf
belong to Sfn.

Now let <S e Sf n. Since y is continuous and 8n upper semicontinuous on S, En is open
and S\En nowhere dense in 8. Since most surfaces of Sf belong to Sfn for every
neN and

= 8(x)} =C\En = S\{J (8\En),
fc-i fc-i

at most points of each such surface, y equals 8. This concludes the proof.
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At each point x with y(x) = S(x), p is not differentiable or xeK. Clearly the family
of all surfaces having a common point with K is nowhere dense in y. Thus most
surfaces in y are not differentiable at most of their points. In contrast to this, we
know that each surface of y is differentiable a.e. The position of the tangent
hyperplanes for most surfaces in y is described by the next theorem.

THEOREM 3. On most surfaces in y there is a.e. a tangent hyperplane which also
supports K.

Proof. Denote by /i the Lebesgue outer measure on Sd_v Let y f be the family of
all surfaces 8 e y such that there exists a set A c Sd_1 of positive outer measure with
the property that, for all xeS with ||x||

for some e > 0 depending on x. Let yn be the set of all those surfaces in y* satisfying
the additional conditions . _ £ _ n-\

Clearly y^ = Un
tl_1<!?'n. We show that yn is nowhere dense in y for every n.

Let (9 be open in y and let SeO have associated function p. For some e > 0,
A(#, S') ^ e implies 8' e<D. Let A be a finite set on 8d_x such that S' = (A, 0] satisfies
A(S,8') ^ e. Clearly the set T of all points of 8' belonging to more than one 'cone'
<p(w) o), 0] satisfies /icT = 0. Let

U = S'(](T+OLB), V = S'\U.

Evidently, for a small enough, /icU < n~x and A (1 cU = 0. For every point xe V,
there exists a point ye T such that the line through x and y touches K. Choose /? > 0
and let S"e(9 satisfy &(S',S") < ft. Elementary arguments show that, for /? small
enough, ^

holds for no zeS" with Hz^^ecF. Hence the above inclusion is true for points zeS"
with HzH^zecC/ at most. Since /icU < n~l, S"$yn. Thus yn is nowhere dense in y.

Consequently most surfaces in y do not belong to yf, which implies that, for most
Sey and almost all points xeS, the inclusion <x,e] c: [S] holds for no e > 0. Let
F' c 8 be this set of points x and let F be the set of all points in F' where S is
differentiable. Clearly S\F has measure zero. Let xeF. There exists, for every ne N,
a segment sn joining x with a point oiK+n'1 B and meeting [[5]. If we exclude now
those surfaces S meeting K, which form a nowhere dense family, we can say that, for
n large enough, there is a point ynesn f]S such that xyn\[S] 4= 0.

For n-> oo, some subsequence of {«„}"_! converges to a segment sx joining x with
a point of K. The corresponding subsequence of {yB}"=1 or a subsequence of it
converges to a point yesx. If y =# x, then xy a S. Thus, by Theorem 1, x = y for most
Sey. This implies that s^ lies in the tangent hyperplane H of S at x. It follows that
H meets K. Since obviously H (] intK = 0 , H supports K. The theorem is proved.

Thus, roughly speaking, Theorems 2 and 3 read as follows: on most surfaces
Sey, most points on S see via [S] nothing more than K and there exists a.e. on
S a tangent hyperplane which supports K.

At least twenty-five years ago Fejes-Toth asked for a characterization of those
plane convex bodies which can be realized as convex kernels of non-convex plane
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sets. De Bruijn and Post (see [5]) proved that every plane convex body can be so
realized. Klee[4] extended this result to separable Banach spaces (the 2-dimensional
case was also treated in [5]). Obviously not aware of the work previously done,
Breen[l] also proved that in a Euclidean space each convex body is the kernel of
some non-convex compact set, thus answering a more recent question of Lay,
identical with the old one of Fejes-Toth.

Now the stated result follows immediately from the next theorem.

THEOREM 4. For most Set?, K is the kernel of [S].

Proof. Choose S in the residual set in Sf revealed by Theorem 2. Let £e[*S]\iir.
Consider two hyperplanes Hv H2 separating x from K and disjoint from K U {x}.
Suppose H1 also separates x from H2. Then, for any point y of S between H1 and H2,
the hyperplane H1 separates the cone \Jx>o(y + A.(K—y)) from x. By Theorem 2, we
find a point yeS between H1 and H2 such that y(y) = S(y). Thus yx <t [S] and x does
not belong to the kernel of [S], which proves the theorem.

Klee[4] also proved that, given a convex body K and positive numbers cr and T
with cr < T, there exists a starshaped set with K as kernel containing the cr-
neighbourhood and contained in the r-neighbourhood of K. Theorem 4 shows that
near any compact starshaped set whose kernel includes K, there is another one, the
kernel of which equals K.

Typical starshaped sets with lower dimensional kernels

Let &>
k be the space of all compact starshaped sets the kernels of which include a

given ^-dimensional compact convex set C lying in a fc-dimensional linear subspace
L of Ud. We suppose again for simplicity that $£_! = $d_j f] L c C.

First let k — d— 1. The boundary of P G ^ J . J is a union of three sets: two of them,
above and below L, are homeomorphic to ff5d—1 and the third is a ring-shaped set
J i c I around C, the exterior part of its boundary with respect to L being a
starshaped (d — 2)-dimensional surface S. In fact the boundary of P may be quite ugly
at points of R. However most P e ^ j . , look nice:

THEOREM 5. For most Pe0>d_x, bdP is homeomorphic to 8d_x and includes the
boundary of C with respect to L.

Proof. Let cjeSd_2 and consider the half-line

We only have to prove that h^OP aC for most P e ^ and every (oeSd_2.
Let SP(n) be the family of all sets Pe&d-i such that, for some ojeSd_2,

diam (hu 0 P\C) ^n~\

We show that ^(n ) is nowhere dense in ^ . j .
Let & be open in &a_x and consider PeO and e > 0, such that A(P,P') < e implies

P'eO. Let
Pi = P U U conv (eB U {x}),

xeS

S being the surface mentioned prior to the statement of Theorem 5 (see Figure 2).
Clearly A(P,Pj) < e. Let v > 0. Let alt a2 be the two points of I/AS(J_1 which are furthest
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Fig. 2

from L. The (unbounded) closed convex cone with apex o, and containing bd C on its
boundary intersects Px in Qt (i = 1,2). If i\ is small enough, P2 = Qi U Q% still belongs
to G. Let yu be the end-point of hw n C different from the origin and define x^eh^C
by \\xu-yj = rT1. Also, let

Since the sets {£w:we<Sd_2} and P2 are compact and disjoint, a > 0. Then, for every
set P3G^>(J_1 with A(P2,P3) < a, for any cjeSd_2 and for any MGAW DP3, the distance
from u to C is less than TO"1. Hence &(n) is nowhere dense and consequently most
members of &d^ are d-dimensional topological disks.

Theorems 2 and 3 are also — suitably modified - valid for sets belonging to &d-x: for
most Pe? , , . , , most points on bdP see not more than C via P and there exists a.e.
on bdP a tangent hyperplane which intersects L along a supporting (d—2)-plane
ofC.

The situation changes if & < d — 2. Then it is not difficult to see that the orthogonal
projection of a typical set in ^ on L1 looks like a typical (d — fc)-dimensional compact
starshaped set (see [2] and [7]). Let Lx be the subspace generated by x and L and, for

let
Q(P) = {toeL1 n Sd_x :LU n P * L}.

THEOREM 6. Por mos< P e ^ . the following holds: P is nowhere dense, O.(P) is dense,
uncountable and of first category inL1 0 Sd_ltfor eacho)eQ(P) the setLu ftPisa (k+1)-
dimensional topological disk Dw, every such disk Du intersects L along C, and the
boundary of Da with respect to L^ contains C and enjoys the properties of Theorems 2
and 3 with respect to C.

Proof. The proof is basically an adaptation of those of theorems 1 and 2 in [7],
theorem 1 in [2] and Theorems 5, 2 and 3 of the present paper. The only thing which
should be explained is why C lies in the boundary of every topological disk Du with
weQ(P).

Let ^( n ) be the family of all Pe^ f c such that there exists a (&+l)-dimensional
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linear subspace J => L for which the measure (volume) of the smaller component of
P n J\L is at least n~l. Let (9 be open in 2Pk and let Pe0 be a finite union of (k +1)-
dimensional topological disks lying in (k +1 )-dimensional linear half-subspaces with
(relative) boundary L. We can easily arrange that no union of two of these half-
subspaces is a linear subspace of Ud, i.e. no two points of fl(P) are opposite. Then, for
e > 0 small enough, every element of & at distance at most e from P does not belong
to ^(n). This proves that &(n) is nowhere dense.

Hence, for most sets belonging to &k, the mentioned topological disks contain C in
their boundaries. The proof of the fact that, for m o s t P e ^ . , no point of L\C belongs
to P parallels the proof of the assertion for k = d—1 (see Theorem 5).

In a Euclidean space, Theorem 6 extends Klee's result mentioned at the end of the
preceding section, which also applies for sets in 3Pk for k < d.
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