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Introduction

After having investigated in [7) generic properties of compact starshaped sets in
R¢, we shall restrict here our attention to compact starshaped sets whose kernels
have positive dimension. While the main results in [7] are of a topological nature and
concern the whole sets, the theorems presented here describe, for kernels of
codimension 0 or 1, the local aspect of the boundaries and include, for kernels of
positive dimension less than d—1, both types of statements.

Very recently, the description in [7] of typical compact starshaped sets in R* was
continued and completed in [2].

The space 7 of all compact starshaped sets in R?, endowed with the Hausdorff
metric A, being closed in the space of all compact sets, is a Baire space. Thus it makes
sense to speak about most, or typical, starshaped (always compact) sets, that is all,
except those in a set of first Baire category.

If we impose the condition that the kernels of the starshaped sets must include a
given convex compact set K, we get a subspace I of 7 which is again a Baire space,
being closed in J. The reason for the special interest in studying J is simple.
Suppose, for instance that K has interior points. Then the boundary of every set
belonging to J is a surface homeomorphic to the boundary S;_; of the unit ball B;
this is not guaranteed for sets belonging to 7. The space & of all boundaries of sets
belonging to I, equipped with the metric A, is homeomorphic to 7. Each member
of & will be called a starshaped surface. A starshaped surface which contains no line
segmant will be called strictly starshaped.

For 4 = R%, we shall use the notation

diamA4 = sup [lz—y|, cd = {||z]'x:xeA\{0}}.
z,y€4

The reader interested in Baire category results obtained in convexity may consult

(6].

On most starshaped surfaces

Supposing, for simplicity, that B c K, every surface S€ % is determined in polar
coordinates (w, p(w)) by an ‘associated’ function p:S,_; - [1, o), so that p(w)weS.
Since § is compact and B lies in the kernel of

[S] ={Az:A€][0,1), €S},

p is a Lipschitz function. As such, it is differentiable a.e. This reminds us of convex
surfaces. The space of all convex surfaces is also a Baire space and most convex
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surfaces are everywhere differentiable and contain no line segments, as Klee[3]
proved. What do most starshaped surfaces look like ? It is proved in this section that
they also contain no line segments, but are not differentiable at most of their points.
Roughly speaking, most of their points do not ‘see’ more than K; on the other hand,
almost all points do ‘see’ more than K (but no SK with > 1).

Let S€% and z€8. Let y(x) be the solid angle under which z sees K, i.e.

y(@) ={lly—z|7 (y—2):y + z,ye K}
and let &(x) be the solid angle of [S] at z, i.e.
o) = {ly—z|7 (y—=):y * x, yx < [§]},

yz denoting the line segment from y to z.
Also, for zeR?, 4 = 8, ,,e > 0, put

{z,€] = conv ({x} U (K+eB))

and, for a given function p, set

{4,e] =bd U {p(v)w,¢].

weA

THEOREM 1. Most surfaces from & are strictly starshaped.

Proof. Let &, be the set of those surfaces in & which contain a line segment of
length n~!. We show that &, is nowhere dense.

&, is obviously closed in &. Let @ be an open set in & and consider Se @ with -
associated function p. Let € > 0 be chosen such that A(S,8") < 2¢ implies 8" € 0.

Consider ve (0, ¢€) and

S, = {reR%: min |lx—y| = e+v}.
ye(S]

Let C, = int {z,0]. It is clearly possible to find a v such that, for any zeS,,
diam C,\([S]+eB) < n1.

The family of open sets {C},. s covers the compact set [S]+ eB (see Figure 1). Hence
there is a finite set 4, = §, such that {C;},., covers [S]+eB. We claim that, for v
small enough, the starshaped surface

S,=bd U C,
ZeEA,
contains no line segment of length »™!. Indeed, every line segment in S, belongs to
the boundary of some C, and is disjoint from [S]+eB; thus it belongs to the
boundary of C,\([S]+ eB) and therefore has length less than ™. Hence S,e O\¥,.
Thus £\, is dense and &, nowhere dense in &. Since any surface in & containing

a line segment lies in UZ_, #,, the conclusion of the theorem follows.

THEOREM 2. On most Se &, for most points x€8, y(x) = d(z).

Proof. Let n be a natural number and

On(x) = {ly—zllMy—2):lly—z| = n, yx < [S]}.
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Fig. 1

Clearly 8(z) = U2, §,(x) and it is easily seen that 4, is upper semicontinuous.
First we prove that

E, ={xe8:4,(x)\v(x) includes no disk of radius n~}
is dense in 8, for most Se &.

Let &, be the family of all those surfaces S€ % such that there exist disks D, and
D, on §;_,, both of (angular) radius n~, with the property that, for all weD,,
D, < 8y(p(w) o)\ (p(w) ®).
It is an easy exercise to check that &, is closed in &. Let @ be an open set in &
and let S€ @ have associated function p. Let ¢ > 0 be chosen such that any element
of & at Hausdorff distance at most ¢ from S lies in @. Let 4 be a finite set on S,_,
such that 8, = {4, 0] satisfies A(S, S,) < e and S,_,\4 includes no disk of radius n!.

Thus we have found a surface 8, € 0 such that for every disk D = §,_, with radius
n”! there exists a point weA N D, at which obviously

0, (pi(w) 0) = y(p, (@) ),
p, being the function associated with 8,. This proves that the complement of &, is
dense and %, is nowhere dense in &.
Let " be the family of all Se & such that E, is dense in S. For any surface
SeA\S "™ there are disks D, D’ = S, ;| of radii m™!, n~! (meN) such that, for all

weD. D’ < 8,(p(w) 0)\y(p(®) W).

Then S€ % paxim,ny- It follows that S\F" < U=_, %,, whence most surfaces in &
belong to &".

Now let €& ™. Since y is continuous and 8, upper semicontinuous on 8, B, is open
and S\E, nowhere dense in S. Since most surfaces of & belong to " for every
neN and . .

{zeS:y(x) = 8(x)} = N E, =8\ U (S\E,),

k=1 k=1

at most points of each such surface, y equals é. This concludes the proof.
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At each point x with y(x) = d(z), p is not differentiable or xe K. Clearly the family
of all surfaces having a common point with K is nowhere dense in &. Thus most
surfaces in & are not differentiable at most of their points. In contrast to this, we
know that each surface of & is differentiable a.e. The position of the tangent
hyperplanes for most surfaces in & is described by the next theorem.

THEOREM 3. On most surfaces in & there is a.e. a tangent hyperplane which also
supports K.

Proof. Denote by u the Lebesgue outer measure on S,_,. Let &' be the family of
all surfaces S € & such that there exists a set A < §,_, of positive outer measure with
the property that, for all ze8 with |z|ze 4,

z,e] < [8]

for some ¢ > 0 depending on z. Let &, be the set of all those surfaces in &1 satisfying

the additional conditions 1

p4d =e=n"l.
Clearly &' = U2, %,. We show that ¥, is nowhere dense in & for every n.

Let @ be open in & and let Se0 have associated function p. For some ¢ > 0,
A(S,8’) < e implies §' € 0. Let 4 be a finite set on S,_, such that §" = {4, 0] satisfies
A(S, 8’) < e. Clearly the set T of all points of 8’ belonging to more than one ‘cone’
{p(w) w,0] satisfies ucT = 0. Let

U=8n(T+aB), V=28\U.

Evidently, for a small enough, ucU <n™' and 4 ncU = . For every point z€V,
there exists a point y € T such that the line through x and y touches K. Choose # > 0
and let 8”@ satisfy A(S’,S”) < f. Elementary arguments show that, for § small

enough, (nY] < [87]

holds for no z€ 8" with ||z|| *zecV. Hence the above inclusion is true for points ze 8"
with ||z]"'zecU at most. Since ucU < n71, 8¢ %,. Thus &, is nowhere dense in &

Consequently most surfaces in & do not belong to &, which implies that, for most
Se& and almost all points ze€ 8, the inclusion {z,¢] < [S] holds for no € > 0. Let
F’ < 8 be this set of points z and let F be the set of all points in F’ where S is
differentiable. Clearly S\F has measure zero. Let z€ F. There exists, for every neN,
a segment s, joining z with a point of K + 27! B and meeting ([S]. If we exclude now
those surfaces S meeting K, which form a nowhere dense family, we can say that, for
n large enough, there is a point y,€s, NS such that zy,\[S] + &.

For n— o0, some subsequence of {s,}X., converges to a segment s, joining x with
a point of K. The corresponding subsequence of {y,}2., or a subsequence of it
converges to a point y€s,,. If y % z, then zy = S. Thus, by Theorem 1, = y for most
Se & . This implies that s lies in the tangent hyperplane H of S at z. It follows that
H meets K. Since obviously H NintK = &, H supports K. The theorem is proved.

Thus, roughly speaking, Theorems 2 and 3 read as follows: on most surfaces
Se&, most points on § see via [S] nothing more than K and there exists a.e. on
S a tangent hyperplane which supports K.

At least twenty-five years ago Fejes-Tdéth asked for a characterization of those
plane convex bodies which can be realized as convex kernels of non-convex plane
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sets. De Bruijn and Post (see [5]) proved that every plane convex body can be so
realized. Klee[4] extended this result to separable Banach spaces (the 2-dimensional
case was also treated in [5]). Obviously not aware of the work previously done,
Breen{1] also proved that in a Euclidean space each convex body is the kernel of
some non-convex compact set, thus answering a more recent question of Lay,
identical with the old one of Fejes-Téth.

Now the stated result follows immediately from the next theorem.

THEOREM 4. For most Se &, K is the kernel of [S].

Proof. Choose S in the residual set in & revealed by Theorem 2. Let xe[S]\K.
Consider two hyperplanes H,, H, separating z from K and disjoint from K U {z}.
Suppose H, also separates x from H,. Then, for any point y of S between H, and H,,
the hyperplane H, separates the cone U, ((y + A(K—y)) from z. By Theorem 2, we
find a point y €S between H, and H, such that y(y) = é(y). Thus yz ¢ [S] and z does
not belong to the kernel of [S], which proves the theorem.

Klee[4] also proved that, given a convex body K and positive numbers ¢ and 7
with o <7, there exists a starshaped set with K as kernel containing the o-
neighbourhood and contained in the 7-neighbourhood of K. Theorem 4 shows that
near any compact starshaped set whose kernel includes K, there is another one, the
kernel of which equals K.

Typical starshaped sets with lower dimensional kernels

Let &, be the space of all compact starshaped sets the kernels of which include a
given k-dimensional compact convex set C lying in a k-dimensional linear subspace
L of R*. We suppose again for simplicity that §,_, =S, ,nL c C.

First let £ = d— 1. The boundary of Pe %,_, is a union of three sets: two of them,
above and below L, are homeomorphic to R?? and the third is a ring-shaped set
R c L around C, the exterior part of its boundary with respect to L being a
starshaped (d — 2)-dimensional surface S. In fact the boundary of P may be quite ugly
at points of R. However most Pe€%,_, look nice:

THEOREM 5. For most Pe%,_,, bdP is homeomorphic to S;_, and includes the
boundary of C with respect to L.

Proof. Let weS,_, and consider the half-line

h, ={Aw:A = 0}.

We only have to prove that b, NP < C for most Pe%,_, and every weS,_,.
Let Z,,, be the family of all sets Pe %,_, such that, for some weS,_,,

diam (b, N P\C) = n™".

We show that £, is nowhere dense in &,_,.
Let O be open in %,_, and consider Pe @ and € > 0, such that A(P, P’) < ¢ implies

Pe@. Let
© P, =Py U conv (eBU{x}),
zeS

S being the surface mentioned prior to the statement of Theorem 5 (see Figure 2).
Clearly A(P, P,) < €. Let 5 > 0. Let a,, a, be the two points of 8,_, which are furthest
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Fig. 2

from L. The (unbounded) closed convex cone with apex a, and containing bd C on its
boundary intersects P, in @, (¢ = 1,2). If 5 is small enough, P, = @, U @, still belongs
to 0. Let y, be the end-point of &, N C different from the origin and define z, ek \C
by [z, —y,ll = n7'. Also, let

a=min{|z,—yl|:weS,_,, yeP}.

Since the sets {z,:weS;_,} and P, are compact and disjoint, & > 0. Then, for every
set P,e?,_, with A(P,, ;) < a, for any we§,;_, and for any ueh, N F,, the distance
from u to C is less than n™!. Hence Z,,, is nowhere dense and consequently most
members of %,_, are d-dimensional topological disks.

Theorems 2 and 3 are also — suitably modified ~ valid for sets belonging to #,_, : for
most Pe%,_,, most points on bd P see not more than C via P and there exists a.e.
on bd P a tangent hyperplane which intersects L along a supporting (d—2)-plane
of C.

The situation changes if k < d—2. Then it is not difficult to see that the orthogonal
projection of a typical set in #, on L* looks like a typical (d — k)-dimensional compact
starshaped set (see [2] and [7]). Let L, be the subspace generated by x and L and, for

PeZ,, let
: Q(P) = {wel*nS, ,:L,NP ¢ L}.

THEOREM 6. For most Pe %, the following holds: P is nowhere dense, Q(P) is dense,
uncountable and of first category in L* N S,_,, for each w € Q(P) the set L, N Pisa (k+1)-
dimensional topological disk D, every such disk D, intersects L along C, and the
boundary of D, with respect to L, contains C and enjoys the properties of Theorems 2
and 3 with respect to C.

Proof. The proof is basically an adaptation of those of theorems 1 and 2 in [7],
theorem 1 in [2] and Theorems 5, 2 and 3 of the present paper. The only thing which
should be explained is why C lies in the boundary of every topological disk D, with
weQ(P). . .

Let 2, be the family of all Pe%, such that there exists a (k+ 1)-dimensional
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linear subspace J o L for which the measure (volume) of the smaller component of
PnJ\L is at least n™1. Let O be open in &, and let P€0 be a finite union of (k+1)-
dimensional topological disks lying in (k+ 1)-dimensional linear half-subspaces with
(relative) boundary L. We can easily arrange that no union of two of these half-
subspaces is a linear subspace of R?, i.e. no two points of Q(P) are opposite. Then, for
€ > 0 small enough, every element of @ at distance at most ¢ from P does not belong
to Z,,,- This proves that &, is nowhere dense.

Hence, for most sets belonging to #,, the mentioned topological disks contain C in
their boundaries. The proof of the fact that, for most Pe 2, no point of L\C belongs
to P parallels the proof of the assertion for k = d—1 (see Theorem 5).

In a Euclidean space, Theorem 6 extends Klee’s result mentioned at the end of the
preceding section, which also applies for sets in &, for k < d.
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