NONDIFFERENTIAB1LITY PROPERTIES OF THE NEAREST POINT MAPPING

 B_V

TUDOR ZAMFIRESCU

in fact the paper is less negative than its title. Indeed, we also prove some differentiability properties of the nearest point mapping as well.

In 1973 Asplund [1] proved that the nearest point mapping p from \mathbb{R}^d onto any of its closed subsets K is almost everywhere Fréchet differentiable. If K is a closed convex set in Hilbert space, then p is nonexpansive and hence Gateaux differentiable almost everywhere. On the other hand, as Fitzpatrick and Phelps have shown [3], p may be nowhere Fréchet differentiable outside K .

From the topological point of view (i.e., Baire category), the set of points of Fréchet nondifferentiability of p may be large, even in Euclidean spaces. Zajíček [5] constructed a convex body $K \subset \mathbb{R}^2$ for which p is Fréchet nondifferentiable at *most* points of $\mathbb{R}^2 \setminus K$, i.e. at all points except those in a set of first category. We shall always use the word "most" in this way. We shall also say that a *typical* element ofa Baire space has a certain property if most elements of the space have that property. For results on typical convex bodies see [12].

In this paper we describe differentiability and nondifferentiability properties of the nearest point mapping p onto a typical convex body $K \subset \mathbb{R}^d$. (Recall that the space of all convex bodies in \mathbb{R}^d , equipped with the Hausdorff distance, is a Baire space.) The proofs will make use of results in $[6]$, $[7]$, $[9]$ and $[11]$. The strong relationship between the differentiability properties of p and of the boundary bd K of K , known for a long time, together with the pathological differentiability properties of bd K for most K will result in a couple of strange theorems. These will reveal the (pathological) beauty of the nearest point mapping.

I thank the referee for his valuable suggestions.

Prerequisites

Throughout the paper we shall tacitly use Klee's result stating that most convex bodies are smooth [4]. (For a strengthening of Klee's result see [10].)

Let $K \subset \mathbb{R}^d$ be a convex body and τ a tangent direction at $x \in bd K$. The halfplane containing $x + \tau$, whose boundary is the normal N at x to bd K, intersects bd K along a curve C called normal section at x in direction τ . The point x is an endpoint of C. Consider $y \in C$ and let $z_x \in N$ be at equal distances from x and γ . Following [2], we define the lower and upper radii of curvature $p(x)$ and $p(x)$ respectively, of bd K at x in direction r by

$$
\rho_i^{\tau} = \liminf_{y \to x} \| z_y - x \|; \quad \rho_i^{\tau} = \limsup_{y \to x} \| z_y - x \|.
$$

We denote by $L(a, b)$ the line through a and b, by $R(a, b)$ the ray which starts at a and contains b, and by $S(a, b)$ the line-segment from a to b.

Lemma 1. Let $x \in bd K$ be such that $p_i^r(x) = \infty$ in a tangent direction τ . *Then, for each point* $y \in p^{-1}(x)$ *, there exists a sequence* $\{h_n\}_{n=1}^{\infty}$ *with* $h_n \to 0 + 1$ *such that*

$$
\lim_{n\to\infty}\frac{p(y+h_n\tau)-p(y)}{h_n}=\tau.
$$

Proof. Let N be the normal at x to bd K. Since $p_i^r(x) = \infty$, there exist a sequence ${z_n}_{n=1}^{\infty}$ of points on the interior normal $N_i = N \setminus p^{-1}(x)$ and a sequence $\{x_{n}^{m}\}_{n=1}^{\infty}$ of points in $H \cap (\text{bd } K) \setminus \{x\}$, where H is the halfplane with boundary N which contains $x + \tau$, such that $|| x - z_n || = || x_n''' - z_n ||$, $||x - z_n|| \rightarrow \infty$, and $x_n^{\prime\prime\prime} \rightarrow x$.

For each n, $\rho_s^t(x) = \infty$ implies that

$$
\max_{v \in A_n} \| z_n - v \| = \| z_n - x_n \|
$$

for some point x_n in the relative interior of A_n , where A_n is the subarc of $H \cap$ bd K from x_n^m to x. Hence $L(z_n, x_n)$ is normal to $H \cap$ bd K and $x_n \rightarrow x$ too. See Fig. 1.

Clearly, $\{x_n\} = S(y + h_n \tau, z_n) \cap$ bd K for suitable numbers h_n . Let Π be the supporting hyperplane of K at x and $\{x'_n\} = S(y + h_n \tau, z_n) \cap \Pi$. Since x and z_n lie on the same side of the supporting hyperplane of K at x_n , the point x_n lies between $y + h_n \tau$ and the orthogonal projection x_n^* of x on $L(x_n, z_n)$. Let y_n^* be the orthogonal projection of $y + h_n \tau$ on Π , and $\{y_n\} = L(y'_n, y + h_n \tau) \cap L(x, x''_n)$. Let Γ_n be the sphere of center $y + h_n \tau$ passing through x_n'' . Put $\{y_n''\}$ = $\Gamma_n \cap S(x'_n, x).$

Now we show thai

(*)
$$
\frac{\|y'_n - y''_n\|}{\|y'_n - x\|} \to 0 \quad (\text{as } n \to \infty).
$$

Let α_n and β_n be the measures of the angles that $R(y + h_n \tau, y_n)$ makes with $R(y + h_n \tau, x_n)$ and with $R(y + h_n \tau, x)$, respectively. Put $t = ||x - y||$ and note that $t = ||y + h_n \tau - y'_n||$, $h_n = ||y'_n - x||$,

$$
\| y + h_n \tau - x_n'' \| = (t + \| y_n - y_n' \|) \cos \alpha_n
$$

and

$$
\|y_n - y'_n\| = h_n \tan \alpha_n.
$$

Therefore

$$
\|y'_n - y''_n\|^2 = (t + h_n \tan \alpha_n)^2 \cos^2 \alpha_n - t^2
$$

= $h_n^2 \sin^2 \alpha_n - t^2 \sin^2 \alpha_n + th_n \sin 2\alpha_n$

whence

(**)
$$
\frac{\|y'_n - y''_n\|^2}{h_n^2} = \sin^2 \alpha_n - \frac{\sin^2 \alpha_n}{\tan^2 \beta_n} + \frac{\sin 2\alpha_n}{\tan \beta_n}
$$

Since $||z_n - x|| \rightarrow \infty$,

$$
\frac{\tan \alpha_n}{\tan \beta_n} = \frac{\|x'_n - y'_n\|}{\|x - y'_n\|} = \frac{\|y + h_n \tau - y'_n\|}{\|z_n - x\| + \|y + h_n \tau - y'_n\|} = \frac{t}{\|z_n - x\| + t} \to 0.
$$

From this and $(**)$ we get $(*)$.

It is easily seen that $p(y + h_n \tau)$ lies in the ball B_n of boundary Γ_n and in the halfspace P of boundary π , containing z_n . Since

$$
\min_{u \in B_n \cap P} \|x - v\| = \|y'_n - x\| - \|y'_n - y''_n\|
$$

and

$$
\max_{u \in B_n \cap P} \|x - v\| = \|y'_n - x\| + \|y'_n - y''_n\|,
$$

remembering $(*)$, we eventually obtain

$$
\frac{\|p(y+h_n\tau)-p(y)\|}{h_n}=\frac{\|p(y+h_n\tau)-x\|}{\|y'_n-x\|}\to 1.
$$

Now let γ_n be the measure of the angle between $R(x, y'_n)$ and $R(x, p(y + h_n \tau))$. Ciearly,

$$
\sin \gamma_n \leq \frac{\|y'_n - y''_n\|}{\|y''_n - x\|} = \frac{\|y'_n - y''_n\|}{\|y'_n - x\|} \left(1 - \frac{\|y'_n - y''_n\|}{\|y'_n - x\|}\right)^{-1},
$$

whence, by (*), $\gamma_n \rightarrow 0$. Therefore

$$
\frac{p(y + h_n \tau) - p(y)}{h_n} \rightarrow \tau,
$$

and the lemma is proved.

Lemma 2. For a typical convex body K ,

(a) $\rho_t^{\tau}(x) = \rho_t^{\tau}(x) = \infty$ a.e. on bd K, for all tangent directions τ ;

(b) $\rho_i^{\tau}(x) = 0$ and $\rho_i^{\tau}(x) = \infty$ at most points of bd K, for all tangent directions τ ;

(c) for most points x on bd K, every point on the interior normal N_i at x (which, by definition, does not contain x) lies on the normals at the points (all different from x) of a sequence converging on bd K to x .

Part (a) is Theorem 2 in [6]. Part (b) is Theorem 2 in [7]. Part (c) is nowhere else explicitly stated, but its proof is part of the proof of the Theorem in [9], although the statement of (c) is not a corollary of that theorem. Hence we omit a proof here and refer the reader to [9].

Lemma 3. For a typical planar convex body K, the set of all points $x \in bd K$ such that

$$
\rho_i^{\pm\tau}(x)=\rho_i^{\pm\tau}(x)=0
$$

(for both tangent directions τ *and* $-\tau$ *) is dense in bd K.*

This is contained in Theorem 3 from [11].

The **d-dimensional case**

Let $p'(y)$ denote the Frechet derivative of p at y and

$$
P_v : \mathbf{R}^d \to H(v)
$$

denote the orthogonal projection of \mathbb{R}^d onto the hyperplane

$$
H(y) = \{ z \in \mathbb{R}^d : (y - p(y), z) = 0 \}.
$$

It is known [3] that the operators $p'(y)$ and P_y satisfy

$$
p'(y) \circ P_y = p'(y) = P_y \circ p'(y).
$$

Theorem 1. *For a typical convex body K, for almost all* $x \in bd K$ *and for any* $y \in p^{-1}(x)$, we have

$$
p'(y)=P_y.
$$

Proof. By Lemma 2(a), for a typical convex body K , $\rho_i^r(x) = \rho_i^r(x) = \infty$ a.e. on bd K, for all tangent directions τ . Let

$$
E = \{x \in \text{bd } K : \rho_t^{\tau}(x) = \rho_s^{\tau}(x) = \infty \text{ for all } \tau \}.
$$

Also, let L be the set of all points outside K where p is Frechet differentiable. Almost all points outside K lie in L . Hence almost all points of bd K lie in $p(L) \cap E$. Take any $y \in p^{-1}(p(L) \cap E)$. By Lemma 1, for every unit vector τ orthogonal to $y - p(y)$ there exists a sequence $\{h_n\}_{n=1}^{\infty}$ such that $h_n \to 0$ + and

$$
\frac{p(y + h_n \tau) - p(y)}{h_n} = \tau.
$$

Then, the existence of $p'(y)$ implies that the directional derivative of p in direction τ is τ . Thus $p'(y)$ restricted to $H(y)$ is the identity and the theorem follows.

Theorem 2. For a typical convex body K, at most points $y \notin K$, the direc*tional derivative of p in some direction does not exist (hence, at most points y* $\notin K$ *, p'(v) does not exist).*

Proof. For a typical convex body K , at most points x on bd K the following happens:

(i) $\rho_{\rm r}$ ^r(x) = ∞ for every tangent direction τ , by Lemma 2(b);

(ii) every point on the interior normal N_i at x lies on the normals at the points (different from x) of a sequence converging on bd K to x, by Lemma 2(c).

Obviously,

$$
M=(\mathbf{R}^d\setminus K)\setminus\bigcup_{x\in F}p^{-1}(x),
$$

where F is the set of all points x verifying (i) and (ii), is a set of first category. Choose arbitrarily $y \notin K \cup M$ and let $p(y) = x$.

From (ii) it follows that there exist a sequence $\{z_n\}_{n=1}^{\infty}$ of points on N, and a sequence $\{x_n\}_{n=1}^{\infty}$ of points on bd K such that $x_n \to x$, $x_n \neq x$, $z_n \to x$, and all $L(x_n, z_n)$ are normals of bd K, as one can easily verify. Let $\{y_n\} = L(x_n, z_n) \cap \Xi$, where Ξ is the hyperplane through y orthogonal to $y - x$. Clearly, $x_n = p(y_n)$.

We may suppose the sequence of rays $\{R(y, y_n)\}_{n=1}^{\infty}$ to be convergent to some ray $Y = \{y + h\tau_0 : h \ge 0\}$, where $\|\tau_0\| = 1$, otherwise consider an appropriate subsequence. One verifies immediately that $z_n \rightarrow x$ yields

$$
\frac{\parallel x_n - x \parallel}{\parallel y_n - y \parallel} \rightarrow 0.
$$

Let y'_n be the orthogonal projection of y_n on Y and set $k_n = ||y - y'_n||$. We have

$$
\frac{\| p(y'_n) - p(y) \|}{k_n} \le \frac{\| x - x_n \| + \| x_n - p(y'_n) \|}{\| y - y_n \| - \| y_n - y'_n \|} \le \frac{\| x - x_n \| + \| y_n - y'_n \|}{\| y - y_n \| - \| y_n - y'_n \|}
$$

$$
= \left(\frac{\| x - x_n \|}{\| y - y_n \|} + \frac{\| y_n - y'_n \|}{\| y - y_n \|} \right) \left(1 - \frac{\| y_n - y'_n \|}{\| y - y_n \|} \right)^{-1} \to 0.
$$

Thus,

$$
\lim_{n\to\infty}\frac{p(y+k_n\tau_0)-p(y)}{k_n}=0.
$$

But condition (i) and Lemma 1 imply that we can also find $\{h_n\}_{n=1}^{\infty}$ such that $h_n \rightarrow 0 +$ and

$$
\lim_{n\to\infty}\frac{p(y+h_n\tau_0)-p(y)}{h_n}=\tau_0.
$$

Hence the directional derivative of p at y in direction τ_0 does not exist, which proves the theorem.

The planar case

In the plane we can provide additional information on the aspect of p for typical K .

96 T. ZAMFIRESCU

Theorem 3. *For a typical planar convex body K, at most points* $y \notin K$ *, p has no directional derivative in any nonnormal direction.*

Proof. For a typical convex body $K \subset \mathbb{R}^2$, at most points $x \in bd K$ we have $\rho_t^{\pm\tau}(x) = 0$ and $\rho_t^{\pm\tau}(x) = \infty$, where r and $-\tau$ are the two tangent directions at x, by Lemma 2(b). Thus, as before, the set of all points $y \in \mathbb{R}^2$ whose images through p are such points x is residual in $\mathbb{R}^2 \setminus K$. To prove the theorem it suffices to show that, in each such y, p has no directional derivatives in both directions τ and $-\tau$.

Choose arbitrarily one of the directions τ and $-\tau$, say τ . By Lemma 1, we can find $h_n \rightarrow 0 +$ such that

$$
\lim_{n\to\infty}\frac{p(y+h_n\tau)-p(y)}{h_n}=\tau.
$$

In the proof of Theorem 2, property (ii) guaranteed by Lemma 2(c) enabled us to find a tangent direction τ_0 at x such that

$$
\lim_{n\to\infty}\frac{p(y+k_n\tau_0)-p(y)}{k_n}=0
$$

for suitable $k_n \rightarrow 0 +$. But, in our case, τ_0 could happen to be $-\tau$.

Thus, a different argument is needed here.

We see that $\rho_i^{\pm \tau}(x) = 0$ implies the existence of a sequence $\{z_n\}_{n=1}^{\infty}$ of points on N_i converging to x and of a sequence $\{X'_n\}_{n=1}^{\infty}$ of points on bd K, converging from both sides to $x (x'_n \neq x)$, such that $||x - z_n|| = ||x'_n - z_n||$.

For every n, $\rho_t^{\pm\tau}(x) = 0$ yields

$$
\min_{v \in A_n} \| z_n - v \| = \| z_n - x_n \|
$$

for some point x_n in the relative interior of A_n , where A_n is the subarc of bd K from x'_n to x. Hence $L(z_n, x_n)$ is normal to bd K, and $x_n \rightarrow x$ from both sides.

Now, as in the proof of Theorem 2, let $\{y_n\} = L(x_n, y_n) \cap \Xi$, where Ξ is the line through y orthogonal to $y - x$. Since $x_n \rightarrow x$ from both sides, we are able to find a subsequence of $\{x_n\}_{n=1}^{\infty}$ such that, for all corresponding indices n,

$$
R(y, y_n) = \{y + h\tau : h \ge 0\}.
$$

Thus τ_0 from the proof of Theorem 2 equals τ and the rest of the argument follows the proof of Theorem 2.

For reflection properties of typical convex curves see [8].

Theorem 4. For a typical planar convex body K , $p' = 0$ at a set of points *dense in* $\mathbb{R}^2 \setminus K$.

Proof. The set G of all points $x \in bd K$ such that $\rho_t^{\pm\tau}(x) = \rho_t^{\pm\tau}(x) = 0$ (for both tangent directions τ and $-\tau$) is dense on bd K, by Lemma 3. Clearly, the set of all $y \in \mathbb{R}^2$ with $p(y) \in G$ is dense in $\mathbb{R}^2 \setminus K$.

Consider such a point y, $x = p(y)$, a unit vector τ orthogonal to $x - y$, the point $y + h\tau$ for some $h > 0$, and the point $x' \in bd K$ such that $y + h\tau - x'$ and $x - x'$ are orthogonal (see Fig. 2). Obviously, $p(y + h\tau)$ lies between x' and x on bd K and $\|x - p(y + h\tau)\| < \|x - x'\|$. Also, $\|x - x'\| < \|x - y'\|$, where y' is the intersection of $L(x', y + h\tau)$ with the supporting line of K at x. Let

$$
\{z'\}=L(x',y+h\tau)\cap L(x,y)
$$

and $z'' \in L(x, y)$ be such that $||z'' - x|| = ||z'' - x'||$. Since $\rho_i^{\tau}(x) = \rho_i^{\tau}(x) = 0$, we have $z'' \rightarrow x$ for $h \rightarrow 0$. Then $z' \rightarrow x$ too, whence

$$
\frac{\|p(v+h\tau)-p(y)\|}{h} < \frac{\|x-y'\|}{\|y-(y+h\tau)\|} = \frac{\|x-z'\|}{\|y-z'\|} \to 0.
$$

It follows that $p'(y) = 0$.

REFERENCES

i E. Asplund, *Differentiability of the metric projection in finite-dimensional Euclidean space,* Proc. Am. Math. Soc. 38 (1973), 218-219.

2. H. Busemann, *Convex Surfaces,* lnterscience, New York, 1958.

98 T. ZAMFIRESCU

3. S. Fitzpatrick and R. Phelps, *Differenttabtlity of the metric projection an lltlbert space,* Trans. Am. Math. Soc. 270 (1982). 483-501.

4. V. Klee, *Some new results on smoothness and rotundity in normed hnear spaces,* Math. Ann. 139 (1959), 51-63.

5. L. Zajiček, *On differentiation of metric projections in finite dimensional Banach spaces*, Czech. Math. J. 33 (1983), 325-336.

6. T. Zamfirescu, *The curvature of most convex surfaces vanishes almost everywhere*, Math. Z. 174 (1980), 135-139.

7. T. Zamfirescu, *Nonexistence of curvature in most points of most convex surfaces*, Math. Ann. 252 (1980), 217-219.

8. T. Zamfirescu, Most comex mirrors are magic, Topology 21 (1982), 65-69.

9. T. Zamfirescu, *Points on infinite[i' many normals to convex surfaces,* J. Reine Angew. Math. 350 (1984), 183-187.

I 0. T. Zamfirescu, *Nearly all convex bodies are smooth and strictly conoer,* Monatsh. Math. 103 (~987), 57-62.

I1. T. Zamfirescu, *Curvature properties of typical conve.r surfaces,* Pacific J. Math. 131 (1988). 191-207.

12. T. Zamfirescu, *Baire categories in convexity*, Atti Sem. Mat. Fis. Univ. Modena, to appear.

FACHBEREICH MATHEMATIK

UNIVERSITÄT DORTMUND 4600 DOaTMUND 50, FRG

(Received August 8, 1988 and in revised form March 2, 1989)