NONDIFFERENTIABILITY PROPERTIES OF THE NEAREST POINT MAPPING

By TUDOR ZAMFIRESCU

In fact the paper is less negative than its title. Indeed, we also prove some differentiability properties of the nearest point mapping as well.

In 1973 Asplund [1] proved that the nearest point mapping p from \mathbb{R}^d onto any of its closed subsets K is almost everywhere Fréchet differentiable. If K is a closed convex set in Hilbert space, then p is nonexpansive and hence Gateaux differentiable almost everywhere. On the other hand, as Fitzpatrick and Phelps have shown [3], p may be nowhere Fréchet differentiable outside K.

From the topological point of view (i.e., Baire category), the set of points of Fréchet nondifferentiability of p may be large, even in Euclidean spaces. Zajíček [5] constructed a convex body $K \subset \mathbb{R}^2$ for which p is Fréchet nondifferentiable at *most* points of $\mathbb{R}^2 \setminus K$, i.e. at all points except those in a set of first category. We shall always use the word "most" in this way. We shall also say that a *typical* element of a Baire space has a certain property if most elements of the space have that property. For results on typical convex bodies see [12].

In this paper we describe differentiability and nondifferentiability properties of the nearest point mapping p onto a typical convex body $K \subset \mathbb{R}^d$. (Recall that the space of all convex bodies in \mathbb{R}^d , equipped with the Hausdorff distance, is a Baire space.) The proofs will make use of results in [6], [7], [9] and [11]. The strong relationship between the differentiability properties of p and of the boundary bd K of K, known for a long time, together with the pathological differentiability properties of bd K for most K will result in a couple of strange theorems. These will reveal the (pathological) beauty of the nearest point mapping.

I thank the referee for his valuable suggestions.

Prerequisites

Throughout the paper we shall tacitly use Klee's result stating that most convex bodies are smooth [4]. (For a strengthening of Klee's result see [10].)

Let $K \subset \mathbb{R}^d$ be a convex body and τ a tangent direction at $x \in bd K$. The halfplane containing $x + \tau$, whose boundary is the normal N at x to bd K, intersects bd K along a curve C called normal section at x in direction τ . The point x is an endpoint of C. Consider $y \in C$ and let $z_y \in N$ be at equal distances from x and y. Following [2], we define the lower and upper radii of curvature $\rho_i^{\tau}(x)$ and $\rho_i^{\tau}(x)$ respectively, of bd K at x in direction τ by

$$\rho_i^{\tau} = \liminf_{y \to x} || z_y - x ||; \quad \rho_s^{\tau} = \limsup_{y \to x} || z_y - x ||$$

We denote by L(a, b) the line through a and b, by R(a, b) the ray which starts at a and contains b, and by S(a, b) the line-segment from a to b.

Lemma 1. Let $x \in bd$ K be such that $\rho_s^{\tau}(x) = \infty$ in a tangent direction τ . Then, for each point $y \in p^{-1}(x)$, there exists a sequence $\{h_n\}_{n=1}^{\infty}$ with $h_n \to 0 +$ such that

$$\lim_{n\to\infty}\frac{p(y+h_n\tau)-p(y)}{h_n}=\tau.$$

Proof. Let N be the normal at x to bd K. Since $\rho_s^{\tau}(x) = \infty$, there exist a sequence $\{z_n\}_{n=1}^{\infty}$ of points on the interior normal $N_i = N \setminus p^{-1}(x)$ and a sequence $\{x_n^m\}_{n=1}^{\infty}$ of points in $H \cap (\operatorname{bd} K) \setminus \{x\}$, where H is the halfplane with boundary N which contains $x + \tau$, such that $||x - z_n|| = ||x_n^m - z_n||$, $||x - z_n|| \to \infty$, and $x_n^m \to x$.

For each n, $\rho_s^{\tau}(x) = \infty$ implies that

$$\max_{v \in A_n} \| z_n - v \| = \| z_n - x_n \|$$

for some point x_n in the relative interior of A_n , where A_n is the subarc of $H \cap$ bd K from x_n^m to x. Hence $L(z_n, x_n)$ is normal to $H \cap$ bd K and $x_n \to x$ too. See Fig. 1.

Clearly, $\{x_n\} = S(y + h_n\tau, z_n) \cap \operatorname{bd} K$ for suitable numbers h_n . Let Π be the supporting hyperplane of K at x and $\{x'_n\} = S(y + h_n\tau, z_n) \cap \Pi$. Since x and z_n lie on the same side of the supporting hyperplane of K at x_n , the point x_n lies between $y + h_n\tau$ and the orthogonal projection x''_n of x on $L(x_n, z_n)$. Let y'_n be the orthogonal projection of $y + h_n\tau$ on Π , and $\{y_n\} = L(y'_n, y + h_n\tau) \cap L(x, x''_n)$. Let Γ_n be the sphere of center $y + h_n\tau$ passing through x''_n . Put $\{y''_n\} = \sum_n \cap S(x'_n, x)$.

Now we show that

(*)
$$\frac{\|y'_n - y''_n\|}{\|y'_n - x\|} \to 0 \quad (\text{as } n \to \infty).$$

Let α_n and β_n be the measures of the angles that $R(y + h_n \tau, y_n)$ makes with $R(y + h_n \tau, x_n)$ and with $R(y + h_n \tau, x)$, respectively. Put t = ||x - y|| and note that $t = ||y + h_n \tau - y'_n||$, $h_n = ||y'_n - x||$,

$$||y + h_n \tau - x_n''|| = (t + ||y_n - y_n'||) \cos \alpha_n$$

and

$$||y_n - y'_n|| = h_n \tan \alpha_n.$$

Therefore

$$\| y'_n - y''_n \|^2 = (t + h_n \tan \alpha_n)^2 \cos^2 \alpha_n - t^2$$
$$= h_n^2 \sin^2 \alpha_n - t^2 \sin^2 \alpha_n + t h_n \sin 2\alpha_n$$

whence

(**)
$$\frac{\|y'_n - y''_n\|^2}{h_n^2} = \sin^2 \alpha_n - \frac{\sin^2 \alpha_n}{\tan^2 \beta_n} + \frac{\sin 2\alpha_n}{\tan \beta_n}$$

Since $||z_n - x|| \rightarrow \infty$,

$$\frac{\tan \alpha_n}{\tan \beta_n} = \frac{\|x'_n - y'_n\|}{\|x - y'_n\|} = \frac{\|y + h_n \tau - y'_n\|}{\|z_n - x\| + \|y + h_n \tau - y'_n\|} = \frac{t}{\|z_n - x\| + t} \to 0.$$

From this and (**) we get (*).

It is easily seen that $p(y + h_n \tau)$ lies in the ball B_n of boundary Γ_n and in the halfspace P of boundary π , containing z_n . Since

$$\min_{\mathbf{x}\in B_n\cap P} \| x - v \| = \| y'_n - x \| - \| y'_n - y''_n \|$$

and

$$\max_{v \in B_n \cap P} ||x - v|| = ||y'_n - x|| + ||y'_n - y''_n||,$$

remembering (*), we eventually obtain

$$\frac{\| p(y+h_n\tau) - p(y) \|}{h_n} = \frac{\| p(y+h_n\tau) - x \|}{\| y'_n - x \|} \to 1.$$

Now let γ_n be the measure of the angle between $R(x, y'_n)$ and $R(x, p(y + h_n \tau))$. Ciearly,

$$\sin \gamma_n \leq \frac{\|y'_n - y''_n\|}{\|y''_n - x\|} = \frac{\|y'_n - y''_n\|}{\|y'_n - x\|} \left(1 - \frac{\|y'_n - y''_n\|}{\|y'_n - x\|}\right)^{-1},$$

whence, by (*), $\gamma_n \rightarrow 0$. Therefore

$$\frac{p(y+h_n\tau)-p(y)}{h_n}\to\tau,$$

and the lemma is proved.

Lemma 2. For a typical convex body K,

(a) $\rho_t^{\tau}(x) = \rho_s^{\tau}(x) = \infty$ a.e. on bd K, for all tangent directions τ ;

(b) $\rho_{i}^{\tau}(x) = 0$ and $\rho_{s}^{\tau}(x) = x$ at most points of bd K, for all tangent directions τ ;

(c) for most points x on bd K, every point on the interior normal N_i at x (which, by definition, does not contain x) lies on the normals at the points (all different from x) of a sequence converging on bd K to x.

Part (a) is Theorem 2 in [6]. Part (b) is Theorem 2 in [7]. Part (c) is nowhere else explicitly stated, but its proof is part of the proof of the Theorem in [9], although the statement of (c) is not a corollary of that theorem. Hence we omit a proof here and refer the reader to [9].

Lemma 3. For a typical planar convex body K, the set of all points $x \in bd K$ such that

$$\rho_i^{\pm \tau}(x) = \rho_i^{\pm \tau}(x) = 0$$

(for both tangent directions τ and $-\tau$) is dense in bd K.

This is contained in Theorem 3 from [11].

The *d*-dimensional case

Let p'(y) denote the Fréchet derivative of p at y and

$$P_{y}: \mathbf{R}^{d} \rightarrow H(y)$$

denote the orthogonal projection of \mathbf{R}^d onto the hyperplane

$$H(y) = \{z \in \mathbf{R}^d : \langle y - p(y), z \rangle = 0\}.$$

It is known [3] that the operators p'(y) and P_y satisfy

$$p'(y) \circ P_y = p'(y) = P_y \circ p'(y).$$

Theorem 1. For a typical convex body K, for almost all $x \in bd$ K and for any $y \in p^{-1}(x)$, we have

$$p'(y) = P_y.$$

Proof. By Lemma 2(a), for a typical convex body K, $\rho_i^{\tau}(x) = \rho_s^{\tau}(x) = \infty$ a.e. on bd K, for all tangent directions τ . Let

$$E = \{x \in bd \ K : \rho_t^{\tau}(x) = \rho_s^{\tau}(x) = \infty \text{ for all } \tau \}.$$

Also, let L be the set of all points outside K where p is Fréchet differentiable. Almost all points outside K lie in L. Hence almost all points of bd K lie in $p(L) \cap E$. Take any $y \in p^{-1}(p(L) \cap E)$. By Lemma 1, for every unit vector τ orthogonal to y - p(y) there exists a sequence $\{h_n\}_{n=1}^{\infty}$ such that $h_n \to 0 +$ and

$$\frac{p(y+h_n\tau)-p(y)}{h_n}=\tau.$$

Then, the existence of p'(y) implies that the directional derivative of p in direction τ is τ . Thus p'(y) restricted to H(y) is the identity and the theorem follows.

Theorem 2. For a typical convex body K, at most points $y \notin K$, the directional derivative of p in some direction does not exist (hence, at most points $y \notin K$, p'(y) does not exist).

Proof. For a typical convex body K, at most points x on bd K the following happens:

(i) $\rho_{\tau}^{\tau}(x) = \infty$ for every tangent direction τ , by Lemma 2(b);

(ii) every point on the interior normal N_i at x lies on the normals at the points (different from x) of a sequence converging on bd K to x, by Lemma 2(c).

Obviously,

$$M = (\mathbf{R}^d \setminus K) \setminus \bigcup_{x \in F} p^{-1}(x),$$

where F is the set of all points x verifying (i) and (ii), is a set of first category. Choose arbitrarily $y \notin K \cup M$ and let p(y) = x.

From (ii) it follows that there exist a sequence $\{z_n\}_{n=1}^{\infty}$ of points on N_i and a sequence $\{x_n\}_{n=1}^{\infty}$ of points on bd K such that $x_n \rightarrow x$, $x_n \neq x$, $z_n \rightarrow x$, and all $L(x_n, z_n)$ are normals of bd K, as one can easily verify. Let $\{y_n\} = L(x_n, z_n) \cap \Xi$, where Ξ is the hyperplane through y orthogonal to y - x. Clearly, $x_n = p(y_n)$.

We may suppose the sequence of rays $\{R(y, y_n)\}_{n=1}^{\alpha}$ to be convergent to some ray $Y = \{y + h\tau_0 : h \ge 0\}$, where $||\tau_0|| = 1$, otherwise consider an appropriate subsequence. One verifies immediately that $z_n \rightarrow x$ yields

$$\frac{\parallel x_n - x \parallel}{\parallel y_n - y \parallel} \to 0.$$

Let y'_n be the orthogonal projection of y_n on Y and set $k_n = ||y - y'_n||$. We have

$$\frac{\|p(y'_n) - p(y)\|}{k_n} \leq \frac{\|x - x_n\| + \|x_n - p(y'_n)\|}{\|y - y_n\| - \|y_n - y'_n\|} \leq \frac{\|x - x_n\| + \|y_n - y'_n\|}{\|y - y_n\| - \|y_n - y'_n\|} = \left(\frac{\|x - x_n\|}{\|y - y_n\|} + \frac{\|y_n - y'_n\|}{\|y - y_n\|}\right) \left(1 - \frac{\|y_n - y'_n\|}{\|y - y_n\|}\right)^{-1} \to 0.$$

Thus,

$$\lim_{n\to\infty}\frac{p(y+k_n\tau_0)-p(y)}{k_n}=0.$$

But condition (i) and Lemma 1 imply that we can also find $\{h_n\}_{n=1}^{\infty}$ such that $h_n \rightarrow 0 +$ and

$$\lim_{n\to\infty}\frac{p(y+h_n\tau_0)-p(y)}{h_n}=\tau_0.$$

Hence the directional derivative of p at y in direction τ_0 does not exist, which proves the theorem.

The planar case

In the plane we can provide additional information on the aspect of p for typical K.

T. ZAMFIRESCU

Theorem 3. For a typical planar convex body K, at most points $y \notin K$, p has no directional derivative in any nonnormal direction.

Proof. For a typical convex body $K \subset \mathbb{R}^2$, at most points $x \in bd K$ we have $\rho_i^{\pm \tau}(x) = 0$ and $\rho_s^{\pm \tau}(x) = \infty$, where τ and $-\tau$ are the two tangent directions at x, by Lemma 2(b). Thus, as before, the set of all points $y \in \mathbb{R}^2$ whose images through p are such points x is residual in $\mathbb{R}^2 \setminus K$. To prove the theorem it suffices to show that, in each such y, p has no directional derivatives in both directions τ and $-\tau$.

Choose arbitrarily one of the directions τ and $-\tau$, say τ . By Lemma 1, we can find $h_n \rightarrow 0 +$ such that

$$\lim_{n\to\infty}\frac{p(y+h_n\tau)-p(y)}{h_n}=\tau.$$

In the proof of Theorem 2, property (ii) guaranteed by Lemma 2(c) enabled us to find a tangent direction τ_0 at x such that

$$\lim_{n\to\infty}\frac{p(y+k_n\tau_0)-p(y)}{k_n}=\mathbf{0}$$

for suitable $k_n \rightarrow 0 + .$ But, in our case, τ_0 could happen to be $-\tau$.

Thus, a different argument is needed here.

We see that $\rho_i^{\pm \tau}(x) = 0$ implies the existence of a sequence $\{z_n\}_{n=1}^{\infty}$ of points on N_i converging to x and of a sequence $\{x'_n\}_{n=1}^{\infty}$ of points on bd K, converging from both sides to $x (x'_n \neq x)$, such that $||x - z_n|| = ||x'_n - z_n||$.

For every n, $\rho_i^{\pm \tau}(x) = 0$ yields

$$\min_{v \in A_n} \| z_n - v \| = \| z_n - x_n \|$$

for some point x_n in the relative interior of A_n , where A_n is the subarc of bd K from x'_n to x. Hence $L(z_n, x_n)$ is normal to bd K, and $x_n \rightarrow x$ from both sides.

Now, as in the proof of Theorem 2, let $\{y_n\} = L(x_n, y_n) \cap \Xi$, where Ξ is the line through y orthogonal to y - x. Since $x_n \to x$ from both sides, we are able to find a subsequence of $\{x_n\}_{n=1}^{\infty}$ such that, for all corresponding indices n,

$$R(y, y_n) = \{y + h\tau : h \ge 0\}.$$

Thus τ_0 from the proof of Theorem 2 equals τ and the rest of the argument follows the proof of Theorem 2.

For reflection properties of typical convex curves see [8].

Theorem 4. For a typical planar convex body K, p' = 0 at a set of points dense in $\mathbb{R}^2 \setminus K$.

Proof. The set G of all points $x \in bd K$ such that $\rho_i^{\pm \tau}(x) = \rho_i^{\pm \tau}(x) = 0$ (for both tangent directions τ and $-\tau$) is dense on bd K, by Lemma 3. Clearly, the set of all $y \in \mathbb{R}^2$ with $p(y) \in G$ is dense in $\mathbb{R}^2 \setminus K$.

Consider such a point y, x = p(y), a unit vector τ orthogonal to x - y, the point $y + h\tau$ for some h > 0, and the point $x' \in bd K$ such that $y + h\tau - x'$ and x - x' are orthogonal (see Fig. 2). Obviously, $p(y + h\tau)$ lies between x' and x on bd K and $||x - p(y + h\tau)|| < ||x - x'||$. Also, ||x - x'|| < ||x - y'||, where y' is the intersection of $L(x', y + h\tau)$ with the supporting line of K at x. Let

$$\{z'\} = L(x', y + h\tau) \cap L(x, y)$$

and $z'' \in L(x, y)$ be such that ||z'' - x|| = ||z'' - x'||. Since $\rho_i^{\mathsf{T}}(x) = \rho_s^{\mathsf{T}}(x) = 0$, we have $z'' \to x$ for $h \to 0$. Then $z' \to x$ too, whence

$$\frac{\| p(v+h\tau) - p(y) \|}{h} < \frac{\| x - y' \|}{\| y - (v+h\tau) \|} = \frac{\| x - z' \|}{\| y - z' \|} \to 0.$$

It follows that p'(y) = 0.

References

1. E. Asplund, Differentiability of the metric projection in finite-dimensional Euclidean space, Proc. Am. Math. Soc. 38 (1973), 218-219.

2. H. Busemann, Convex Surfaces, Interscience, New York, 1958.

T. ZAMFIRESCU

3. S. Fitzpatrick and R. Phelps, *Differentiability of the metric projection in Hilbert space*, Trans. Am. Math. Soc. 270 (1982), 483-501.

4. V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51-63.

5. L. Zajiček, On differentiation of metric projections in finite dimensional Banach spaces, Czech. Math. J. 33 (1983), 325-336.

6. T. Zamfirescu, The curvature of most convex surfaces vanishes almost everywhere, Math. Z. 174 (1980), 135-139.

7. T. Zamfirescu, Nonexistence of curvature in most points of most convex surfaces, Math. Ann. 252 (1980), 217–219.

8. T. Zamfirescu, Most convex mirrors are magic, Topology 21 (1982), 65-69.

9. T. Zamfirescu, Points on infinitely many normals to convex surfaces, J. Reine Angew. Math. 350 (1984), 183-187.

10. T. Zamfirescu, Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987), 57-62.

11. T. Zamfirescu, Curvature properties of typical convex surfaces, Pacific J. Math. 131 (1988), 191-207.

12. T. Zamfirescu, Baire categories in convexity, Atti Scm. Mat. Fis. Univ. Modena, to appear.

FACHBEREICH MATHEMATIK

Universität Dortmund 4600 Dortmund 50, FRG

(Received August 8, 1988 and in revised form March 2, 1989)