NONDIFFERENTIABILITY PROPERTIES OF THE
NEAREST POINT MAPPING

By
TUDOR ZAMFIRESCU

in fact the paper is less negative than its title. Indeed, we also prove some
differentiability properties of the nearest point mapping as well.

In 1973 Asplund [1] proved that the nearest point mapping p from R? onto any
of its closed subsets K is almost everywhere Fréchet differentiable. If Kis a closed
convex set in Hilbert space, then p is nonexpansive and hence Gateaux differenti-
able almost everywhere. On the other hand, as Fitzpatrick and Phelps have
shown [3], p may be nowhere Fréchet differentiable outside K.

From the topological point of view (1.e., Baire category), the set of points of
Fréchet nondifferentiability of p may be large, even in Euclidean spaces. Zaji¢ek
[5] constructed a convex body K C R? for which p is Fréchet nondifferentiable at
most points of R2\ K, i.c. at all points cxcept those in a set of first category. We
shall always use the word “most™ in this way. We shall also say that a ¢ypical
clement of a Baire space has a certain property if most elemcents of the space have
that property. For results on typical convex bodies see [12].

In this paper we describe differentiability and nondifferentiability properties of
the nearest point mapping p onto a typical convex body K C R?. (Recall that the
space of all convex bodies in RY, equipped with the Hausdorff distance, is a Baire
space.) The proofs will make use of results in [6], [7], [9] and [11]. The strong
relationship between the differcntiability properties of p and of the boundary
bd K of K, known for a long time, together with the pathological differentiability
propertics of bd K for most K will result in a couple of strange theorems. These
will reveal the (pathological) beauty of the nearest point mapping.

I thank the referee for his valuable suggestions.

Prerequisites
Throughout the paper we shall tacitly use Klee’s result stating that most convex
bodies are smooth [4). (For a strengthening of Klee's result see [10].)
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Let K C RY be a convex body and t a tangent direction at xEbd K. The
halfplane containing x + 7, whose boundary is the normal ¥ at x to bd X,
intersects bd K along a curve C called normal section at x in direction 7. The
point x is an endpoint of C. Consider y € C and let z, €N be at equal distances
from x and y. Following [2], we definc the lower and upper radii of curvature
pl(x) and p{(x) respectively. of bd K at x in direction 7 by

pl=liminf ||z, —x||; pf=Ilimsup ||z, — x| .
yo=x

y—x

We denote by L(a, b) the line through g and b, by R(a, b) the ray which starts
at a and contains b, and by S(a, b) the line-segment from a to 4.

Lemma 1. Let xEbd K be such that pi(x) = x in a tangent direction t.
Then, for each point y € p~(x), there exists a sequence {h,}x., with h, —0+
such that

lim PO * ht) — p(y)
lj‘l h =1

Proof. Lect N be the normal at x to bd XK. Since p{(x)= x, there exist a
sequence {z,} -, of points on the interior normal N, =N\ p~'(x) and a
scquence {x,} ., of points in // N(bd K)\ {x}, where H is the halfplane

n=1

o”

with boundary N which contains x + 7, such that ||x —z, || = [|x,—z. |,

hx—z,|| »x,and x,; —x.
For each n, p!(x) = x implies that

mzzx |z =l = 22 — x4l

reE

for some point x, in the relative intcrior of A,, where A, is the subarcof H N bd K
from x %10 x. Hence L(z,, x,) is normal to H N bd K and x, — x too. See Fig. 1.

Clearly, {x,} =S(y + h,1, z,) N bd K for suitable numbers #4,. Let IT be the
supporting hyperplane of K at xand {x;} = S(» + A,7, z,) N I1. Since x and z, lie
on the same side of the supporting hyperplane of K at x,, the point x, lies between
v + h,7r and the orthogonal projection x% of x on L(x,,z,). Let y, be the
orthogonal projection of y + h,t on Il, and {y,} =Ly, y + h,t) N L(x, x7%).
et T, be the sphere of ccenter y + h,t passing through x;. Put {y;}=
T, N S(x;, x).

Now we show that

s —val

] 0 (asn— x).
lys—xI|

(*)
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Fig. 1.

Le: «, and B, bc the measures of the angles that R(y + A,1, y,) makes with
R(y + h,t, x,) and with R(y + h,1, x), respectively. Put 1 = | x — y || and note
thatt = [y + Ao —yo |l ha = hyn — x|,

Iy +hc—xill =+ | ya—yall Xosa,

ancé
| vo — vill = hotana,.
Therefore
lve —vil*=@+ h,tana,)?cos’a, — t?
= h?sin’a, — t?sin’a, + th,sin 2a,,
whence
oyt 2 2 . 2
) Iy =yall® ., sin’a, sin 2a,
() ————— =sin'a, — .
hs tan’p, tanp,

Since |z, —x || =,



NEAREST POINT MAPPING 93

tana, _ || x;—vill _ |y +ht—yall _ !

ang, Ix—vill lz—x+lythr—yll lz—x| +¢

—

From this and (s*) we get (*).
1t is easily seen that p(y + A,7) lies in the ball B, of boundary I', and in the
haifspace P of boundary n, containing z,. Since

min | x—v|l = {lya=xl = lya—y7l
EHNP

and
max || x —v|| =y x|l + |ys—vil.
€8, NP

remembering (=), we eventually obtain

L PG + kD) = PO _ Np +hD) —x
h, lvi—x1

Now Iet y, be the measure of the anglc between R(x, y;) and R(x, p(y + h,1)).
Ciearly,

o ” r ” o ” -1
siny, < Y2 "V h_ Yo~ Vs I (1 _ II}n’ ya II)
[vi—xl Ava—xl Iy —xIl

whence, by (*), 7, — 0. Therefore

PO+ A1) — PO
A,

+

and the lemma is proved.

Lemma 2. For a typical convex body K,

(@) pf(x)=p]{x)=x a.e. on bd K, for all tangen! directions 7,

(b) pi(x) = 0andp}(x) = x at most points of bd K, for all tangent directions 1,

(c) for most points x onbd K, every point on the interior normal N, at x (which,
by definition, does not contain x) lies on the normals at the points (all different
from x) of a sequence converging onbd K to x.

Part (a) is Theorem 2 in [6). Part (b) is Theorem 2 in [7]. Part (c) is nowhere else
explicitly stated, but its proof is part of the proof of the Theorem in [9], although
the statement of (c) is not a corollary of that theorem. Hence we omit a proof here
and refer the reader to [9].

Lemma 3. Fora typical planar convex body K, the set of all points x €Ebd K
such that

Pt (x)=p "(x)=0
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(for both tangent directions t and — t) is dense in bd K.

This is contained in Theorem 3 from [11].

The d-dimensional case
Let p’(y) denote the Fréchet derivative of p at y and
P,:RI—H(y)
denote the orthogonal projection of R? onto the hyperplane
Hy)={zER': (y — p(y), z) = 0}.
It is known [3] that the opcrators p’(y’) and P, satisfy
p'y)e P, =p'(y)="P,°p'(y)

Theorem 1. Foratypical convex body K, for almost all x Ebd K and for any
VE p~Yx), we have

p'(y)=P"P,.

Proof. By Lemma 2(a), for a typical convex body K, p/(x) = p{(x) = % a.c.
on bd K, for all tangent directions 7. Let

E={x€EbdK:pi(x)=p/(x)= x forall 7}.

Also. let L be the set of all points outside K where p is Fréchet differentiable.
Almost all points outside K lic in L. Hence almost all points of bd K lie in
p(L)YN E. Take any yE€ p~Y(p(L)N E). By Lemma 1, for every unit vector 7
orthogonal to y — p(y) there exists a sequence {A,}-, such that 4, — 0+ and

Py +hT)—pB) _
P

Then, the existence of p’(y) implies that the directional derivative of p in
direction 7 is 1. Thus p’(y) restricted to H(y) is the identity and the theorem
follows.

Theorem 2. For a typical.convex body K, at most points y € K, the direc-
tional derivative of p in some direction does not exist (hence, at most points y € K,
p’(v) does not exist).

Proof. For a typical convex body K, at most points x on bd X the following

happens:
(i) pi(x) = oo for every tangent direction 7, by Lemma 2(b);
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{11) every point on the interior normal &, at x lies on the normals at the points
{(different from x) of a sequence converging on bd K to x, by Lecmma 2(c).
Obviously,
M=R\K)\ U p lx)

xXEF

where F is the set of all points x verifying (i) and (i1), is a sct of first category.
Choosc arbitrarily y &€ K U M and let p(y) = x.

From (ii) it follows that there exist a sequence {z,},7., of pointson N, and a
sequence {x,}* , of points on bd X such that x, —x, x, # x, z, =~ x, and all
L(x,, z,) are normals of bd K, as one can easily verify. Let {y,} = L(x,, z,) N E,
where = is the hyperplane through y orthogonal to y — x. Clearly, x, = p(y,).

We may suppose the sequence of rays {R(y, y,)}+~ to be convergent to some
ray Y = (v + hto: h 2 0}, where || 7, || = 1, otherwise consider an appropriate
subsequence. One verifies immediately that z, — x yiclds

lx —x )
lya—y |

Let y; be the orthogonal projection of y,on Yand sctk, = || ¥ — y; || . We have

Np) =Pl _x =X I + 12X 2O _ X —xall + 1 va—yall

k., B A I B A I R I A |
— — p’ 4’ -1
zz(ﬂx Xl Ay )nﬂ)(l__u}a yuﬂ> 0
Ny =yl Ny—yal Ny —yal
Thus,
. py + ko) — p(¥)
Iim . =0.

But condition (i) and Lemma ! imply that we can also find {4, }>.; such that
h,—0+ and

'+ hoT) —

lim PO T = P0)

s h,

[+2)

Hence the directional derivative of p at y in direction 1, does not exist, which
proves the theorem.

The planar case

In the plane we can provide additional information on the aspect of p for
typical K.
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Theorem 3. Fora typical planar convex body K, at most points y € K, p has
no directional derivative in any nonnormal direction.

Proof. For a typical convex body K C R?, at most points x Ebd K we have
pI7(x)=0andp,’ "(x) = x, where T and — t are the two tangent directions at x,
by Lemma 2(b). Thus, as before, the set of all points y € R? whose images through
p are such points x is residual in R? \ K. To prove the theorem it suffices to show
that, in each such y, p has no directional derivatives in both directions rand — .

Choose arbitrarily one of the directions rand — 1, say 7. By Lemma 1, we can
and 4, — 0+ such that

im PO R PG
m =T

L h"

In the proof of Theorem 2, property (1i) guaranteed by Lemma 2(c) enabled us to
find a tangent direction T, at x such that

i p(v + k1) — p(y)
m k .

0

for suitable £, — 0 + . But, in our case, 1, could happen to be — 1.

Thus, a different argument is needed here.

We see that p,* *(x) = 0 implies the existence of a sequence {z,} ., of points on
N, converging to x and of a sequence {x; },>., of points on bd K, converging from
ooth sides to x (x;, # x),such that | x —z, || = | xr—z, || .

For every n, p,"*(x) = 0 yields

min [z, —v| = | za — x, |
rE€EA,

for some point x, in the relative interior of A, where A, is the subarc of bd X from
x; to x. Hence L(z,, x,) is normal to bd K, and x, — x from both sides.

Now, as in the proof of Theorem 2, let (y, } = L(x,, y,) 1 Z, where Z is the line
through y orthogonal to y — x. Since x, —~ x from both sides, we are able to find a
subsequence of {x,} ., such that, for all corresponding indices n,

Ry, y,)={y +ht:h =0}

Thus 1, from the proof of Theorem 2 equals t and the rest of the argument follows
the proof of Theorem 2.
For reflection properties of typical convex curves see [8].

Theorem 4. For a typical planar convex body K, p’ =0 at a set of points
dense in R*\ K.
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Proof. The set G of all points x Ebd K such that p*"(x) =p,**(x) = 0 (for
both tangent directions rand — 1)is dense on bd K, by Lemma 3. Clearly, the set
of all y ER? with p(v)E G is dense in R?\ X.

y + ht y

Fig. 2.

Consider such a point y, x = p(y). a unit vector 7 orthogonal to x — y, the
point y + At for some £ > 0, and the point x’Ebd K such that y + At — x’ and
x — x’ are orthogonal (see Fig. 2). Obviously, p(y + ht) lies between x’ and x on
bdK and ||x—p(y+AD)|| <|x—-x"||. Also, |[x—x"|| <|[x—y]|,
wiiere ' is the intersection of L(x’, y + A1) with the supporting line of K at x. Let

{z}=L{x",y+ht)Nn L{x, y)

and z”E€L(x.y)besuchthat || z” —x || = || z” —x’| . Since p; (x) = pJ(x) =0,
we have z” — x for h — 0. Then z’ — x too, whence
fpv+hty—pIN __ Hx—yf _ lix—z] 0
h ly-—w+hOl Jly—2z]

It follows that p’(y) = 0.
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