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in fact the paper is less negative than its title. Indeed, we also prove some 
differentiability properties of the nearest point mapping as well. 

In 1973 Asplund [1] proved that the nearest point mapping p from Raonto any 

of its closed subsets K is almost everywhere Fr6chet differentiable. I fK  is a closed 

convex set in Hilbert space, then p is nonexpansive and hence Gateaux differenti- 
able almost everywhere. On the other hand, as Fitzpatrick and Phelps have 

shown [3], p may be nowhere Fr6chet differentiable outside K. 

From the topological point of view (i.e., Baire category), the set of points of 

Frechet nondifferentiability o fp  may be large, even in Euclidean spaces. Zaji~ek 
[5] constructed a convex body K C R 2 for which p is Fr6chet nondifferentiable at 

most points of R ~ \ K, i.e. at all points except those in a set of  first category. We 

shall always use the word "most" in this way. We shall also say that a typical 
element o fa  Baire space has a certain property if most elements of  the space have 

that property. For results on typical convex bodies see [ 12]. 

In this paper we describe differentiability and nondifferentiability properties of  
the nearest point mapping p onto a typical convex body K c R a. (Recall that the 

space of all convex bodies in R a, equipped with the Hausdorfl'distance, is a Baire 

space.) The proofs will make use of results in [6], [7], [9] and [111. The strong 

relationship between the differentiability properties of  p and of  the boundary 

bd K of K, known for a long time, together with the pathological differentiability 

properties of bd K for most K will result in a couple of strange theorems. These 
will reveal the (pathological) beauty of the nearest point mapping. 

I thank the referee for his valuable suggestions. 

Prerequisites 

Throughout the paper we shall tacitly use Klee's result stating that most convex 

bodies are smooth [4]. (For a strengthening of Klee's result see [10].) 
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Let K c R a be a convex body and r a tangent direct ion at xE~bd K. The 

halfplane containing x + r ,  whose boundary  is the normal  N at x to bd K, 

intersects bd K along a curve C called normal  section at x in direct ion r .  The  

point x is an endpoin t  of  C. Consider  ), G C and let z~ E N  be at equal distances 

from x and y.  Following [2], we define the lower and upper  radii o f  curvature  

p,'(x) and p[(x) respectively, o f b d  K at x in direction r by 

Pl  = l i m  i n f  II z~ - x II ; p[ = l i ra  s u p  II z~ - x II- 

We denote  by L(a,  b) the line through a and b, by R(a,  b) the ray which starts 

at a and contains b, and by S(a, b) the l ine-segment from a to b. 

L e m m a  1. Let x ~ bd K be such that p~(x) = ,~ in a tangent direction r. 

Then, for each point y E p -  ~(x), there exists a sequence {h. }2-, with h. --* 0 + 

such that 

p(y  + h . r )  - p(y)  
lim = r.  

P r o o f .  Let N be the normal  at x to bd K. Since p[(x) = ~ ,  there exist a 

sequence {z.}.%, of  points on the interior normal N, = N \ p - ~ ( x )  and a 

sequence {x~'}.~_, o f  points in t t  n (bd K ) \  {x}, where H is the halfplane 

with boundary  N which contains x + r ,  such that l[ x - z. II = II x . " -  z .  II, 
ll x - z. I[ --* ~ ,  and x ] ' - - x .  

For each n, p / (x )  = zc implies that 

m a x  II z .  - v II = II - ' .  - x .  II 
t'EEA~ 

for some point  x .  in the relative interior  o fA . ,  where A. is the subarc o f H  n bd K 

from x ;;' to x .  Hence L(z . ,  x . )  is normal  to H n bd K and x .  ~ x too. See Fig. 1. 

Clearly, {x.} = S(y + h.z,  z . )  n bd K for suitable numbers  h. .  Let FI be the 

supporting hyperplane o f K a t  x a n d  {x '}  = S(y  + h . r ,  z .)  O H. Since x a n d  z. lie 

on the same side o f  the support ing hyperplane o f K a t  x . ,  the point  x .  lies between 

y + h . r  and the orthogonal  projection x'~ of  x on L(x . ,  z.). Let y" be the 

orthogonal  project ion o f  y + h.T on H. and {y.} = L(y ' ,  y + h.r)  n L(x ,  x%). 

Let F.  be the sphere o f  center y + h . r  passing through x.". Put  {y~} = 

.% n S ( x ; ,  x).  
Now we show thai 

[[ Y~ -- Y~ I[ ( ,)  ---0 (as n - -  ~c). 
II y ;  - x II 
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Fig, I. 
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Le:  a .  a n d  ft .  be  the  m e a s u r e s  o f  the  ang les  t ha t  R(y + h . r ,  y . )  m a k e s  wi th  

R ( y  + h . r ,  x . )  a n d  wi th  R ( y  + h . r ,  x ) ,  r e spec t ive ly .  Pu t  t = 11 x - y 11 a n d  n o t e  

tha t  t = II y + h . r  - y"  1[, h .  = 1~ Y" - x 11, 

II y + h . r  - x ~  II = (t + !1 y .  - y"  II )cos  o,. 

and 

T h e r e f o r e  

II Y. - Y; II = h .  t a n  a . .  

II Y~' - . v ~  112 = (t + h .  t an  a . ) 2  cos2 a .  - t 2 

= h .  z sin 2 o~. - t 2 s i n Z a .  + t h .  sin 2 a . ,  

w h e n c e  

2 sin 2 a .  s i n 2 a .  
(**) 11 Y;, - Y~ [I sin 2 a .  + - -  

h .  2 t an  2 p .  t an  p .  

S ince  il z .  - x [[ --- ~c. 
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t a n  a..____~. = [I x~, - y,~ II _ II Y + h . r  - y "  II _ _ t ~ 0 .  

t a n  ,8,  II x - y ;  II II : .  - x II + II Y + h , r  - y ;  II II = .  - x II + t 

From this and (**) we get (*). 
It is easily seen that p(y + h.r) lies in the ball B. of  boundary F. and in the 

haifspace P of  boundary n, containing z,. Since 

and 

min II x - v II = II y; ,  - x II - II y ;  - y ~  II 
t'EBaNP 

m a x  
t,EB.nP 

II x - v II = II .v~ - x II + II y s  - y 7  I I ,  

remembering (*), we eventually obtain 

I! p 0 '  + h . r )  - p(y) II = II PrY ~- h . r )  - x II . ] .  

h. II Y" - x II 

Now let 7. be the measure of  the angle between R(x, y') and R(x. p(y + h.r)) .  

Clearly, 

sin 7, < !1 y ;  - y .  II _ II y ;  - y .  II l 1[)_2. - -  Y.._. I I  ' 

Ii Y~' - x II II Y;  - - x  II II Y;, - -  x II ' 

whence, by (*), 7. -" 0. Therefore 

p(y + h. r )  - p(y) 

hn 
---~ r ,  

and the lemma is proved. 

L e m m a  2. For a typical convex body K, 

(a) pT(x) = p](x )= ~c a.e. on bd K, for all tangent directions r; 
(b) p;(x)  = 0 andp[(x) = ~ at most points of  bd K,for all tangent directions r; 

(c) for most points x on bd K, every point on the interior normal N, at x (which, 

by definition, does not contain x)  lies on the normals at the points (all different 

from x)  of  a sequence converging on bd K to x.  

Part (a) is Theorem 2 in [6]. Part (b) is Theorem 2 in [7]. Part (c) is nowhere else 

explicitly stated, but its proof  is part of  the proof  of  the Theorem in [9], although 

the statement of(c) is not a corollary of  that theorem. Hence we omit  a proof  here 

and refer the reader to [9]. 

L e m m a  3. For a typical planar convex body K, the set of  all points x ~ bd K 

such that 

p,• ' (x)  = p,-* ' (x)  = 0 
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(.6)r both tangent directions r and - r) is dense in bd K. 

This is contained in Theorem 3 from [ I 1 ]. 

T h e  d - d i m e n s i o n a l  c a s e  

Let p ' ( y )  denote the Frechet derivative o f p  at y and 

P,. : R a ~ i t ( y )  

denote the orthogonal projection o f  R d onto the hyperplane 

I t ( y )  = ( z ~ R U :  (y - p(y) ,  z )  = 0}. 

It is known [3] that the operators P '0 ' )  and Py satisfy 

p'(Y) ~ P,. = P '0 ' )  = Py ~ P'(Y). 

T h e o r e m  1. For a typical convex body K, for ahnost all x E bd K and for any 

y E p - ~(x), we have 

P ' C V )  = P~. 

P r o o f .  By Lemma 2(a), for a typical convex body K, p,'(x) = p](x) = z~ a.e. 

on bd K, for all tangent directions r .  Let 

E = ( x E b d  K : p : ( x ) = p i ( x ) =  oo for all r}. 

Also, let L be the set of  all points outside K where p is Frechet differentiable. 

Almost all points outside K lie in L. Hence almost all points of  bd K lie in 
p(L)  A E. Take any y @ p - ~ ( p ( L )  N E). By Lemma I, for every unit vector r 

orthogonal to y - P0')  there exists a sequence (h. },~_ ~ such that h. --  0 + and 

p(y  + h.r)  - .  p(y)  

h, 

Then, the existence of  p'(y)  implies that the directional derivative of  p in 

direction r is r.  Thus p'(y)  restricted to H(y)  is the identity and the theorem 

follows. 

T h e o r e m  2. For a typical.convex body K, at most points y ~ K, the direc- 

tional derivative o f  p in some direction does not exist (hence, at most points y q~ K, 

p'(v ) does not exist). 

P r o o f .  For a typical convex body K, at most points x on bd K the following 

happens: 
(i) p~(x) = oo for every tangent direction ~, by Lemma 2(b); 
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(ii) every point  on the interior  normal  N, at x lies on the normals  at the points 

(different from x)  of  a sequence converging on bd K to x ,  by Lem m a  2(c). 

Obviously, 

M = ( R a \ K ) \  U p-~(x) ,  
x E F  

where F is the set o f  all points x verifying (i) and (ii), is a set o f  first category. 

Choose arbitrarily y ~ K u M and let p (y)  = x.  

From (ii) it follows that there exist a sequence {z.};,%, o f  points on N, and a 

sequence {x.}~_~ o f  points on bd K such that x . - - - x ,  x~ ~ x .  z. ~ x .  and all 

L(x., z.) are normals o f b d  K, as one can easily verify. Let {y.} = L(x. ,  z.) n E, 
where E is the hyperplane through y orthogonal  to y - x.  Clearly, x .  = p(.v.). 

We may suppose the sequence o f  rays {R(y,  Y.)}~-t to be convergent  to some 

ray Y = {y + hro : h > 0}, where [I r0 tl = I, otherwise consider  an appropr ia te  

subsequence. One verifies immediate ly  that z. ~ x yields 

J lx .  - x  II 
* 0 .  

II y .  - y  II 

Let y" be the orthogonal  project ion o f y .  on Y and set k. = II y - y~' II - We have 

Thus, 

II p l y : )  - p ( y )  II 

k. 

II x - x~ II + II x ,  - p ( y ; ) I I  _ _  p < l l x - x .  II §  y ,  II 

II y - -  Y. II -- II Y. -- Y; II II Y -- Y. II -- 11 Y. -- Y; II 

_ I l x - x .  II + l . . . .  0.  

II y ~" II il y - ~ i II Y - Y~ II 

PO' + k.r0) - p(y) 
lim = 0 .  
n - ~  k n 

But condi t ion (i) and Lemma  1 imply that we can also find {h. }2-t such that 

h. ~ 0 + and 

P0 '  + h . r 0 ) -  p (y)  
lim = %. 
- - ~  h. 

Hence the direct ional  der ivat ive  o f  p at y in direct ion r0 does not exist, which 

proves the theorem. 

T h e  p l a n a r  c a s e  

In the plane we can provide addit ional  informat ion on the aspect o f  p for 

~.ypical K. 
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T h e o r e m  3.  For a typical planar convex body K, at most points y ~ K, p has 

no directional derivative in any nonnormal direction. 

P r o o f .  For  a typical convex body K C R 2, at most  points  x E bd K we have  

p,-" ' (x )  = 0 and p,-* ' ( x )  = oc, where r and - r are the two tangent direct ions at x ,  

by L e m m a  2(b). Thus.  as before,  the set o f  all points  y ~ R 2 whose images through 

p are such points  x is residual in R 2 \ K. To  prove  the theorem it suffices to show 

that, in each such y ,  p has no direct ional  der iva t ives  in both direct ions r and - r .  

Choose arbi trar i ly one o f  the direct ions r and - r ,  say r .  By L e m m a  1, we can 

find h. - -  0 + such that 

p (y  + h . r )  - p (y )  
l im = r .  
n ~  Jc, hp  I 

In the p roo f  of  T h e o r e m  2, proper ty  (ii) guaranteed  by L e m m a  2(c) enabled us to 

find a tangent direct ion r0 at x such that  

p(y + k.r0) - p (y )  
l im = 0 

for suitable k. ~ 0 + .  But, in our  case, r0 could happen  to be - r .  

Thus,  a different a rgument  is needed here. 

We see that  p,-' ' ( x )  -- 0 implies the existence o f  a sequence {z, }~-1 o f  points  on 

N, converging to x and o f  a sequence {x~ },~_~ o f  points  on bd K, converging f rom 

both sides to x (x,' § x),  such that  II x - z .  II = II x .  - z .  II �9 

For  every n, p,-~'(x) = 0 yields 

min  [1 z. - v II = II z .  - x .  II 
v~E,4. 

for some point  x .  in the relative inter ior  o f  A., where A. is the subarc  o f b d  K f r o m  

x;, to x .  Hence  L(z . ,  x . )  is normal  to bd K, and x .  - - -x  f rom both  sides. 

Now, as in the p r o o f  o f  T h e o r e m  2, let {y. } = L(x . ,  y.)  N Z, where E is the line 

through y or thogonal  to y - x.  Since x .  -~ x f rom both  sides, we are able to find a 

subsequence of  {x. }.~.~ such that,  for all cor responding  indices n, 

R ~ , y . ) - - ( y + h T : h  >_-0}. 

Thus  r0 f rom the p roo f  o f  T h e o r e m  2 equals r and the rest o f  the a rgument  follows 

the p r o o f  o f  T h e o r e m  2. 

For  reflection proper t ies  of  typical convex curves see [8]. 

T h e o r e m  4.  For a typical planar convex body K, p' = 0 at a set o f  points 

dense in R ~ \ K. 
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P r o o f .  The set G of  all points x • b d  K such that p , + - ' ( x ) = p , •  0 (for 

both tangent directions r and - r)  is dense on bd K, by Lemma 3. Clearly, the set 

of all 3, E R  2 with p(y)EG is dense in R: \ K. 

y+h 'c  Y 

y'  

X ~ 

x. 

z" 

z I 

Fig. 2. 

Consider such a point y ,  x = p(y) ,  a unit vector z orthogonal to x - y,  the 

point y + hr  for some h > 0, and the point  x ' E b d  K such that y + hr  - x '  and 

x - x '  are orthogonal  (see Fig. 2). Obviously,  p(_v + hr)  lies between x '  and x on 

bd K and 11 x - p 0 '  + h r )  II < II x - x '  II- A l s o ,  il x - x '  II < II x - y" II, 
where y '  is the intersection ofL(x' ,  y + hr)  with the support ing line o f  K at x.  Let 

(z '}  = L(x',  y + hr) N L(x,  y) 

and z " @ L ( x ,  y)  be such that II z "  - x II = U z"  - x '  II- S i n c e p T ( x )  --- p ; ( x )  = 0,  

we have z"  --- x for h - -  0. Then z '  --- x too, whence 

II pCv + hr)  - p (y )  II < tl x - y '  II = II x - z '  II ~ 0.  

h II Y - -  (Y 4- h r )  II II 3' - z '  II 

It follows that p ' (y)  = O. 
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