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ABSTRACT. A typical compact starshaped set in Ed is "small" from the topo- 
logical as well as from the measure theoretic viewpoint. We formulate this more 
explicitly in the paper by using the notions of porosity and Hausdorff dimen- 
sion. Moreover, we see that the directions of the line segments in a typical 
compact starshaped set are many, but not too many. 

1. INTRODUCTION 

Our aim is to obtain deeper insight into the structure of typical compact 
starshaped sets in d-dimensional euclidean space Ed; these are subsets S of 
Ed admitting a point k E S such that, for any x E S, the line segment kx is 
contained in S. 

A topological space is called Baire if the complement of any subset of first 
category is dense, where a subset offirst (Baire) category is a countable union 
of nowhere dense sets. They are also called meager sets. By Baire's category 
theorem any complete metric space is Baire. When speaking of most or of 
typical elements we mean all elements except those in a meager set. A property 
shared by most elements of a Baire space is called generic [6], [7]. For results 
on generic properties in convexity the interested reader is referred to [4], [9] 

Let St denote the space of all compact starshaped sets in Ed endowed with 
its common topology which is induced, for example, by the Hausdorff metric 

H 6 . A version of the Blaschke selection theorem implies the completeness of 
St with respect to H. 

Starshaped sets have attracted some interest in combinatorial geometry, ge- 
ometry of numbers and other areas. In [10] several generic properties of com- 
pact starshaped sets were derived, among them the following: Most compact 
starshaped sets S are nowhere dense, have a single-point kernel {k}, i.e. k is 
the unique point such that kx is contained in S for any x E S, and have a 
dense set of directions determined by the line segments kx. 
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In ?2 it will be shown that the set of directions determined by the line seg- 
ments in a typical compact starshaped set S is an uncountable subset of S - 

of first category. 
Most compact starshaped sets are "quite dense" at their single point kernels 

and "quite thin" at any other point. This is expressed in ?3 in a more precise 
way using the concept of porosity. 

By means of a result on the irregularity of approximation in [3] it will be 
shown in ?4 that most compact starshaped sets have Hausdorff dimension 1 
while they are of non- a-finite 1-dimensional Hausdorff measure. 

We mention that generic properties of starshaped sets with higher dimen- 
sional kernels have been studied in [11], while the Hausdorff dimension and the 
corresponding Hausdorff measure for typical compacta, continua and curves are 
determined in [5]. 

2. THE SET OF DIRECTIONS OF A TYPICAL COMPACT STARSHAPED SET 

If a compact starshaped set S in Ed has a single-point kernel {k} its set of 
directions D(S) in S 1 is defined by 

D(S)={ xk : x S\{k}} 

d where denotes the Euclidean norm on E 

Theorem 1. Most compact starshaped sets in Ed have a single-point kernel and 
their set of directions is a dense subset of first category of Sd- 1, of cardinality c. 

An elementary argument leads to the following: 

I Let X be a Baire space and assume that Y is a subspace of X 

(1) | containing most elements of X. Then Y is also Baire and if 

Z c Y contains most elements of Y then it also contains most 

elements of X. 

Let S be the subspace of St consisting of all S E St with a single-point kernel. 
The Corollary in [10] says that 

(2) S contains most S E St 

and by [10, Theorem 2] 

(3) for most S E S the set of directions D(S) is dense in Sd-1 

Proof of Theorem 1. We denote by (x, y) the line through x, y E Ed (x $ y). 
For S E S and m = 1, 2,.. ., let {k} be the kernel of S and define 

Dm(S)={ k :xES,jx-kj j 4. 
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For m= 1, 2,... and n=mn+1, m+2,... ,let 

Smn ={S e S: ]p E S, Ip -k =-,S n {x: lx -pll < -, llx - kHl>-} rn n rn 
C (p,k)}. 

Simple arguments concerning convergence in St imply that 

(4) Smn is closed in S. 

In order to prove that 

(5) Smn has empty interior in S, 

assume the contrary. Since the collection of all starshaped sets consisting of 
finitely many line segments issuing from the single-point kernel is dense in S, 
there is a set of this type interior to Smn By suitably adding finitely many 
line segments to it, if necessary, we obtain a starshaped set S E Smn with the 
following property: The line segments in S of length at least 1/m appear 
in pairs such that for any such pair {s, t} (i) each of the line segments s, t 
has length larger than 1/m and (ii) the endpoints of s and t distinct from 
the single-point kernel have distance less than 1/n. Hence S 0 Smn This 
contradiction concludes the proof of (5). 

The definition of Dm and Smn together with (4), (5) imply that 

(6) f {S c S: Dm(S) contains an isolated point} c Ua=m+1 Smn is of 
first category in S for m = 1, 2, .... 

For m= 1,2,...,n=m+1, ,m+2, ..., let 

?mn = {S E S: Di(S) contains a component of diameter >- 

It is easy to show that 

Tmn is closed and has empty interior in S. 

Hence 
( {S e S: Dm(S) is not totally disconnected} c U' m+I Tmn is of 

first category in S for m = 1, 2, .... 

A nonempty totally disconnected compact set without isolated points in Ed 
is homeomorphic to the Cantor discontinuum and thus has cardinality c, see 
e.g . (cardinality of continuum) [ 1, p. 121]. Note also that a totally disconnected 
compact set in Ed is nowhere dense. Thus (6) and (7) yield that 

(8) a for most S E S the set Dm (S) either is empty or has cardinality 

c and is nowhere dense in Sd- 
Clearly, 

00 

(9) D(S)= U Dm(S) for each S E S 
m=1 
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and 

(10) the compact starshaped sets consisting of single points only form 

a closed nowhere dense subset of S. 
(8), (9) and (10) together show that 

for most S E S the set of directions D(S) has cardinality c and 

( is of first category in S 
Now Theorem 1 follows from (3), (11), (2), and (1). 

3. POROSITY PROPERTIES OF TYPICAL COMPACT STARSHAPED SETS 

The porosity of a subset S of Ed at a point x E S is defined as 

lim sup p(e) 
6-o+ E 

where p(e) is the radius of the largest (solid, open, euclidean) ball disjoint from 
S, whose centre is at distance at most E from x. The set S is called strongly 
porous, respectively nonporous, at x E S if its porosity at x is 1, respectively 
0. 

Theorem 2. Most compact starshaped sets in Ed have a single-point kernel at 
which they are nonporous, and are strongly porous anywhere else. 

Proof. We first prove that 

(12) most S E S are nonporous at their kernels. 

By (3) it suffices for the proof of (12) to verify the following proposition: 
dlI 

(13) f Let S E S be such that D(S) is dense inS '. Then S is non- 

porous at its kernel {k}. 
Assume this is not true. Then there is a p > 0 such that there are balls with 
centres y arbitrarily close to k and radii pllk - yll disjoint from S. Since 

D(S) is dense in Sd-1 we may choose dl, ... dn E D(S) such that any ball 

with centre in S 1 and radius p intersects {dl, ... ,dn}. Let kp1, ... ,kpn 
be segments in S having directions dl, ... dn respectively and let a be the 
smallest length of such a segment. Then for any point y with IIY - k < a the 
ball B (y, p Iy - k1) with centre y and radius p Iy - k intersects at least one 

of these segments. This contradiction proves ( 13) and thus settles ( 12). 
For 1, m, n = 1,2, ..., let 

Smn ={S e S: ]x E S with llx-kll > 
- 

such that Vy with IIx-Y-y <- Imn ~~~~~~~~M 

B(y, (I - -)IIx - kll) n S 7& 0} 
n 

It is a simple matter to show that 

Sltnn is closed and has empty interior in S. 



COMPACT STARSHAPED SETS 211 

Hence 

(14) I {S E S: ]x E S \ {k} such that S is not strongly porous at x} 
c U,m ,n=1 S/mn is of first category in S. 

Propositions (12), (14), (2), and (1) together imply Theorem 2. 

4. HAUSDORFF MEASURE AND HAUSDORFF DIMENSION 

OF TYPICAL COMPACT STARSHAPED SETS 

Let a > 0. The a-dimensional Hausdorff measure ui, (S) of a subset S of 
Ed is defined by 

(00 00 1 
,,(S) = lim inf JY(diam Uk)a: Uk c Ed, diam Uk< c,ScUUk K Y 

-4+Ok1 J 

where diam denotes diameter. A set S has c-finite ua-measure if it can be 
represented as a countable union of sets of finite u -measure. For any S c Ed 
there is a unique number 6, 0 < ( < d, called the Hausdorff dimension of S 
such that ,u,(S) = +oo for a < ( and ju,(S) = 0 for a > ( [2], [8]. 

Theorem 3. Most compact starshaped sets in Ed have non- a-finite 1-dimension- 
al Hausdorff measure but are still of Hausdorff dimension 1. 
Proof. We first derive the following simple lemma: 

Suppose that in a measure space with measure u a measurable 
set M is an uncountable union of disjoint measurable sets of 

(15) positive measure, say M = U{MI: i E I}. Then M cannot be 
represented as a countable union of measurable sets of finite 
measure. 

Assume this is not true. Then there are measurable sets Nn with 

( 1 6) Xl (NJ < ox for n = 1 , 2 , . . . 

and 
00 

M = U Nn. 
n=1 

For each i E I we have that 
00 

M = U(M nNn) 
n=1 

and thus 
00 

Z,i(M, n Nn)> ? (M1) >0. 
n=1 

Hence for each i E I there is an n with j(M, n NJ) > 0. The uncountability 
of I then implies that ji(Mi n Nno) > 0 for uncountably many i's and a fixed 
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no. Thus there is an a > 0 such that ju(M1 n Nno) > a for uncountably 
many i's. This shows that Nno contains countably many disjoint measurable 
sets of measure > a. Therefore ju(Nno) = x, in contradiction to (16), which 
concludes the proof of (15). 

d In fact u I is not a measure but a metric outer measure of Ed. Hence all 
Borel sets and thus in particular all line segments are ,ul-measurable, see [2, 
Theorem 1. 5]. These remarks together with (1 5) show that 

J any S E St which can be represented as disjoint union of un- 
(17) countably many line segments of positive length has non-a-finite 

9 I -measure. 

By Theorem 1 most S E St consist of uncountably many line segments of 
positive lengths. This combined with (17) settles the first part of Theorem 3. 

The proof of the second part is similar to the proof of [3, Theorem 2]. It is 
based on two propositions. The first one is taken from [3, Theorem 1]. 

Let a I E 2 , a..., be positive reals and S0 1 02 ..., nonnegative 

upper semicontinuous real functions on a Baire space X such 
that 

(18) {x E X: 6On(x) = o(an) as n -+ oo} 

is dense in X. Then for most x E X the inequality on (x) < an 
holds for infinitely many indices n. 

For c > 0 and S E St, let M, (S) be the maximum number of points in 
S with pairwise distances at least E. Using the fact that (St, 5H) is a closed 
subspace of the space of all compact subsets of Ed endowed with the metric 
5H, the proof of [3, Theorem 2] then yields the following proposition: 

(19) For E > 0 fixed, the function ME is upper semicontinuous on St. 

This is the second tool needed. 
Fix z > 0 and choose a sequence 0 < a1I < a2 < , for which 

(20) n = o(an), an = o(n ') as n ox. 

We now show that 

(21) f for most S E St the inequality Ml1n(S) < an holds for infinitely 
many n. 

The compact starshaped sets consisting of finitely many line segments form a set 
dense in St and for any such starshaped set S we clearly have Ml In (S) = 0(n) . 
Hence by (20) 

{S E St: MlIn(S) = o(an) as n -+ oo} is dense in St. 

Since St is Baire, this combined with (19) and (18) yields (21). 
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The next proposition required is the following: 

(22) { Let S E St satisfy Ml,,(S) < a, for infinitely many n. Then 

/11+,(S) = 0. 

Choose el 82 > 0. Since M1ln(S) < an for infinitely many n, by (20) we 
may choose an n for which 

(23) 2/n < el E aXn (21n) 
I+ 

< E2 E M = Miln(S) < Cen 

By the definition of M there is a maximal system of points in S with mutual 
distances not less than l/n and consisting of precisely M points. The balls 
B1, ..., BM of radius 1/n with centres at the points of our maximal system 
cover S. (Otherwise there is a point in S having distance larger than l/n 
from each point of the maximal system. Hence the latter cannot be maximal.) 
Then (23) implies that 

00 00 A 

inf 1(diam Uk) Uk c E , diam Uk < el, S c U uk 
lk~~~~~~~~~~~~~1~~~~ k=i k=i 

M 

< E (diam Bk) 
k=1 

= M11n(S) (2/n) 

< an (2/n) < 82 

Since e IE 82 > 0 were arbitrary, the definition of u1 shows that u1+T (S) = 0, 
concluding the proof of (22). 

From (21) and (22) the following assertion results. 
If T > 0 then ul1+,(S) = 0 for most S E St. 

Applying this for z = 1, 1/2, 1/3, ... , we see that, for most S E St, 
,U1 + I / (S) vanishes for any n . In other words, the Hausdorff dimension of most 
compact starshaped S E St is at most 1. Since, by the first part of Theorem 3, 
most S E St have Hausdorff dimension at least 1, this concludes the proof of 
the second part of Theorem 3. 

ACKNOWLEDGMENTS 

We are obliged to Professor F. J. Schnitzer and the referee for their valuable 
suggestions. 

REFERENCES 

1. P. Alexandrof and H. Hopf, Topologie I, Springer, Berlin, 1935. 

2. K. J. Falconer, The geometry offractal sets, Cambridge, University Press, Cambridge, 1985. 

3. P. M. Gruber, In most cases approximation is irregular, Rend. Sem. Mat. Univ. Politecn. 
Torino 41 (1983) 18-33. 

4. __, Results of Baire categorv type in convexity, Ann. New York Acad. Sci. 44 (1985) 163-169. 



214 PETER M. GRUBER AND TUDOR I. ZAMFIRESCU 

5. , Dimension and structure of typical compact sets, continua and curves, Monatsh. Math., 
(to appear). 

6. R. B. Holmes, Geometric functional analysis and its applications, Springer, New York, 
Heidelberg, Berlin, 1975. 

7. C. J. Oxtoby, Measure and category, Springer, New York, Heidelberg, Berlin, 1971. 
8. C. A. Rogers, Hausdorff measures, Cambridge University Press, Cambridge, 1970. 
9. T. Zamfirescu, Using Baire categories in geometry, Rend. Sem. Mat. Univ. Politecn. Torino 

43 (1985) 67-88. 
10. , Typical starshaped sets, Aequationes Math. 36 (1988) 188-200. 
11. , Description of most starshaped surfaces, Math. Proc. Cambridge Phil. Soc., (to appear). 

ABTEILUNG FUR ANALYSIS, TECHNISCHE UNIVERSITAT WIEN, WIEDNER HAUPTSTR. 8-10/1 142, 
A- 1040 VIENNA 

FACHBEREICH MATHEMATIK, UNIVERSITAT DORTMUND, POSTFACH 50 05 00, D-4600 
DORTMUND 50 


	Article Contents
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214

	Issue Table of Contents
	Proceedings of the American Mathematical Society, Vol. 108, No. 1 (Jan., 1990), pp. 1-286
	Front Matter
	Combinatorial Multinomial Matrices and Multinomial Stirling Numbers [pp. 1-8]
	Cosimplicial Homotopies [pp. 9-17]
	Complementation of Jordan Triples in Von Neumann Algebras [pp. 19-24]
	Induced Cells [pp. 25-29]
	Derivations with Nilpotent Values on Lie Ideals [pp. 31-37]
	P-Adic Transcendental Numbers [pp. 39-41]
	Deficiency Modules and Specializations [pp. 43-48]
	Finite Simple Abelian Algebras are Strictly Simple [pp. 49-57]
	Notes on the Inversion of Integrals II [pp. 59-67]
	A Characterization of the Elements of the Socle of a Jordan Algebra [pp. 69-71]
	A Property of Infinitely Differentiable Functions [pp. 73-76]
	Measures of Graphs on the Reals [pp. 77-87]
	Yet Another Proof of the Lyapunov Convexity Theorem [pp. 89-91]
	Relatively Open Mappings [pp. 93-94]
	Compact Weighted Composition Operators on Banach Lattices [pp. 95-99]
	Inverse *-Semigroups *-Generated by Families of Isometries [pp. 101-106]
	Positive Solutions of Difference Equations [pp. 107-115]
	Conjugate Convex Functions and the Epi-Distance Topology [pp. 117-126]
	Projections, the Weighted Bergman Spaces, and the Bloch Space [pp. 127-136]
	Stable Rank of Subalgebras of the Disc Algebra [pp. 137-142]
	A Simple Example of a Normal Operator T on a Banach Space Such That [p. 143]
	On Twisted Fréchet and (LB)-Spaces [pp. 145-150]
	The Death of an Index Theorem [pp. 151-156]
	Iterated Fine Limits [pp. 157-162]
	Classification of Skew Symmetric Matrices [pp. 163-169]
	Dieudonné-Schwartz Theorem in Inductive Limits of Metrizable Spaces II [pp. 171-175]
	Mixed and Directional Derivatives [pp. 177-185]
	On a Problem of G. G. Lorentz Regarding the Norms of Fourier Projections [pp. 187-190]
	A Note on Fréchet-Montel Spaces [pp. 191-196]
	Gaussian Curvatures of Lorentzian Metrics on the Plane and Punctured Planes [pp. 197-205]
	Generic Properties of Compact Starshaped Sets [pp. 207-214]
	Conformal Circles and Parametrizations of Curves in Conformal Manifolds [pp. 215-221]
	On Extensions of Models of Strong Fragments of Arithmetic [pp. 223-232]
	Bounds on the Expectation of Functions of Martingales and Sums of Positive RV's in Terms of Norms of Sums of Independent Random Variables [pp. 233-239]
	Two Classes of Fréchet-Urysohn Spaces [pp. 241-247]
	On the Cohomological Dimension of the Localization Functor [pp. 249-254]
	An Easy Example of a 0-Space Not Almost Rimcompact [pp. 255-256]
	A Simple Construction of Stein's Complementary Series Representations [pp. 257-266]
	The Nonexistence of Expansive Homeomorphisms of 1-Dimensional Compact ANRS [pp. 267-269]
	Chaotic Numerics From an Integrable Hamiltonian System [pp. 271-281]
	Two-Dimensional Representations of Groups with Property FA [pp. 283-284]
	Note on "The Logically Simplest Form of the Infinity Axiom" [pp. 285-286]
	Back Matter



