Arch. Math., Vol. 54, 563-566 (1990)

The nearest point mapping is single valued nearly everywhere

By

TUDOR ZAMFIRESCU

0. Introduction. The function $p_K \colon \mathbb{R}^d \to 2^{\mathbb{R}^d}$ called *metric projection* or *nearest point* mapping is well-known: For a given closed set $K \subset \mathbb{R}^d$, p_K associates to each $x \in \mathbb{R}^d$ the set of all points of K closest to x. It is known that p_K is single valued almost everywhere and at most points of \mathbb{R}^d ([2]), i.e. p_K is not single valued on a set of measure zero and first Baire category. We shall prove here that p_K is single valued nearly everywhere, i.e. p_K is not single valued on a σ -porous set, which implies both preceding assertions. We also establish that, for most compact sets K, p_K is not single valued at densely many points. This will not happen, however, if the boundary of K is smooth enough, as we shall see in the last section.

1. Definitions. For $x \in \mathbb{R}^d$, $\varrho > 0$, let $B(x, \varrho)$ denote the open ball $\{y \in \mathbb{R}^d : ||x - y|| < \varrho\}$. We call a set $M \subset \mathbb{R}^d$

porous at x ∈ X if there is an α > 0 such that, for any ρ > 0, there exists y ∈ B(x, ρ) satisfying
B(y, α ||x - y||) ∩ M = Ø ([1]),

- porous if it is porous at all points of \mathbb{R}^d ,
- $-\sigma$ -porous if it is a countable union of porous sets.

If a property is shared by all elements of a metric Baire space except those in a σ -porous set, then we say that *nearly all* of them enjoy it ([3]).

2. The general case.

Theorem 1. The nearest point mapping is single valued at nearly all points of \mathbb{R}^d .

Proof. We first show that for any $\varepsilon > 0$, the set

$$D_{\varepsilon} = \{x \in \mathbb{R}^d : \text{diam } p_K(x) \ge \varepsilon\}$$

is porous.

Let $x \in \mathbb{R}^d$ and consider the point $y \in p_K(x)$. For any point $z \in int x y$, we show that

$$B\left(z,\frac{\varepsilon \|x-z\|}{2 \|x-y\|}\right) \cap D_{\varepsilon} = \emptyset.$$

Indeed, suppose on the contrary u lies in the above intersection; then

$$p_{K}(u) \subset B(u, ||u - y||) \setminus B(x, ||x - y||).$$

To estimate the diameter Δ of the right side, let v be the point of the line through x and u closest to y. Then clearly

$$||v - y|| \le \frac{||u - z|| \cdot ||x - y||}{||x - z||} < \frac{\varepsilon}{2}.$$

Obviously $\Delta = 2 ||v - y||$. Hence diam $p_K(u) < \varepsilon$, which contradicts $u \in D_{\varepsilon}$. Hence D_{ε} is porous.

Thus p_K is not single valued precisely at the points of $\bigcup_{n=1}^{\infty} D_{n-1}$, which is a σ -porous set. This proves the theorem.

3. The typical case. It is well-known that the space \mathscr{K} of all compact sets in \mathbb{R}^d endowed with the Hausdorff metric δ is a Baire space. The next result describes the typical aspect of p_K .

Theorem 2. For most compact sets $K \subset \mathbb{R}^d$, the nearest point mapping p_K is not single valued at a dense set of points.

Proof. Let B_0 be a fixed open ball of centre b and radius r in \mathbb{R}^d , and let

 $\mathscr{K}_{b,r} = \{ K \in \mathscr{K} : p_K \text{ is single valued at all points of } B_0 \}.$

We show that $\mathscr{K}_{b,r}$ is nowhere dense. Consider any $\varepsilon \in (0, r)$ and any compact set $K \in \mathscr{K}$. Take a point $y \in K \setminus B(b, \varepsilon/2)$ closest to b (or take any $y \in \mathbb{R}^d$ with $||b - y|| = \varepsilon/2$ if $K \subset B(b, \varepsilon/2)$) and consider an equilateral triangle $yy_1 y_2$ such that

$$||b - y_1|| = ||b - y_2|| < ||b - y||.$$

If its side length is $\varepsilon/3$, then $K' = (K \setminus B(b, \varepsilon/2)) \cup \{y, y_1, y_2\}$ satisfies $\delta(K, K') \leq \varepsilon$. Let y'_1, y'_2 be the points of B_0 such that $b \in y'_1 y'_2$ and $y_1 y_2 y'_2 y'_1$ is a rectangle, and put $v = (\|y'_1 - y_2\| - \|y'_1 - y_1\|)/2$.

Take now any $L \in \mathscr{K}$ with $\delta(K', L) < v$. We prove that $L \notin \mathscr{K}_{b,r}$. Let $L_i = L \cap B(y_i, v)$ (*i* = 1, 2). Some elementary calculations show that, if $x \in y'_1 y'_2$, then $p_L(x) \subset L_1 \cup L_2$. If $z_{i,j}$ is a point in L_i closest to y'_i (*i*, *j* = 1, 2), then

$$||y'_1 - z_{1,1}|| < ||y'_1 - y_1|| + \nu = ||y'_1 - y_2|| - \nu < ||y'_1 - z_{2,1}||$$

and, analogously,

$$\|y'_2 - z_{2,2}\| < \|y'_2 - z_{1,2}\|.$$

Since the distance from x to L_i is a continuous function of x (i = 1, 2), there is some point $y' \in y'_1 y'_2$ with equal distances to L_1 and L_2 . Thus p_K is not single valued at $y' \in B_0$, whence $L \notin \mathscr{K}_{b,r}$.

Therefore $\mathscr{K}_{b,r}$ is nowhere dense. If we now let b be any point with rational coordinates and r be rational, then the union of all these $\mathscr{K}_{b,r}$ is of first category. Since every open

564

set in \mathbb{R}^d includes a ball B(b, r) with b and r as above, for most $K \in \mathcal{K}$, p_K is not single valued at densely many points.

4. The case of a planar set with analytic boundary. In the preceding section we saw that p_K may not be single-valued at a dense set of points. However, we prove now that, if bd K is smooth enough, this can no longer happen. Although the next result is true in any dimension, for simplicity reasons we shall restrict ourselves to the planar case.

Theorem 3. If $K \subset \mathbb{R}^2$ is closed and $\operatorname{bd} K$ is an analytic Jordan curve then p_K is not single-valued on a nowhere dense set.

Proof. Let $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$. Choose a point $y_0 \in p_K(x_0)$. Consider the curvature $\gamma(y_0)$ of bd K positive if y_0 separates x_0 from the centre of curvature in y_0 . Then clearly $\gamma(y_0) \ge - \|x_0 - y_0\|^{-1}$.

Equip $\gamma(y)$ with a sign for all $y \in b dK$ in a way agreeing with the case $y = y_0$.

If bd K is a circle or a line, then p_K is not single valued at one point at most. So we suppose bd K is neither a circle, nor a line. Then, since bd K is analytic, there is an arc $\widehat{y_0}y^* \subset \operatorname{bd} K$ on which γ is strictly monotone.

We may suppose, of course, that $||y_0 - y^*|| < ||x_0 - y_0||$ and that the whole arc $\widehat{y_0 y^*}$ lies below the line L through x_0 and y_0 . Since bd K is an analytic Jordan curve, every arc of bd K reaching y_0 from the half space H below L includes or is included in $y^* y_0$. Since bd K is locally connected, there is a number $\alpha > 0$, such that every point of bd K at distance at most α from y_0 can be joined with y_0 by an arc of bd K of diameter less than $||y_0 - y^*||$.

Let $z \in int x_0 y_0$ and

$$\varrho = \frac{\alpha \|x_0 - z\|}{2 \|x_0 - y_0\|}.$$

We claim that p_K is single valued on $B(z, \varrho) \cap H$. To show this, let $x \in B(z, \varrho) \cap H$. Put

$$D = B(x, ||x - y_0||) \setminus B(x_0, ||x_0 - y_0||).$$

Clearly, $p_K(x) \subset \overline{D}$ and diam $D \leq \alpha$. Hence $y^* \notin \overline{D}$.

We show now that $p_K(x) \subset \widehat{y_0y^*}$. Let $u \in p_K(x)$. Any arc $\Gamma \subset \operatorname{bd} K$ joining u with y_0 either meets $\widehat{y_0y^*} \setminus \{y_0\}$ or surrounds $\widehat{y_0y^*}$ or surrounds $B(x_0, ||x_0 - y_0||)$. In both latter cases, Γ would have length larger than $||y_0 - y^*||$, whence Γ must meet $\widehat{y_0y^*} \setminus \{y_0\}$. Obviously, this together with the fact that $\operatorname{bd} K$ is a Jordan curve and with $y^* \notin \overline{D}$ implies $\Gamma \subset \widehat{y_0y^*}$. Hence $u \in \widehat{y_0y^*}$ and it is proved that $p_K(x) \subset \widehat{y_0y^*}$.

Suppose two distinct points $y_1, y_2 \in p_K(x)$. Then, clearly,

$$\gamma(y_1) \ge - \|x - y_1\|^{-1},$$

 $\gamma(y_2) \ge - \|x - y_1\|^{-1}.$

Since

$$\int_{\widehat{y_1}, y_2} \gamma(y) \, dy$$

equals the angle $y_1 x y_2$ (equipped with a sign as well, in an obvious way), but would be larger if

$$\gamma(y) > - ||x - y_1||^{-1}$$

for all $y \in int y_1 y_2$, we must have

$$\gamma(y_3) \leq - \|x - y_1\|^{-1}$$

for some point y_3 between y_1 and y_2 . But this contradicts the strict monotony of γ on $y_0 y^*$. Hence $p_K(x)$ consist of one point only. Thus p_K is single valued in $B(z, \varrho) \cap H$, and the proof is finished.

References

- E. DOLŽENKO, Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. 31, 3-14 (1967).
- [2] S. STECHKIN, Approximative properties of Banach spaces subsets. (In Russian). Rev. Roum. Math. Pures Appl. 8, 5-8 (1963).
- [3] T. ZAMFIRESCU, How many sets are porous? Proc. Amer. Math. Soc. 100, 383-387 (1987).

Eingegangen am 24. 11. 1988

Anschrift des Autors:

Tudor Zamfirescu Fachbereich Mathematik der Universität Dortmund Postfach 500500 D-4600 Dortmund 50

566