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0. — Introduction.

It is well-known how useful the Baire category theorem was in
Analysis for half a century and it is also known that it keeps being
an important tool to distinguish between «small » and «big» sets in
the absence of a measure (or in contrast to what a measure provides),
or simply to prove existence theorems.

In 1959 V. Klee [35] established the first results of this kind in
the geometry of convex bodies. The frame of his work was a Banach
space and this is probably the reason why his results seem to have
been overlooked by convex geometers. When finally, 18 years later,
the interest for this research direction reappeared and P. Gruber
published his first paper on this topic (rediscovering, among others,
Klee’s results mentioned above), the series of results along these lines
did not brake any more. We intend to present here an up-to-date
survey of results of this kind obtained in geometric Convexity start-
ing with Klee’s pioneering paper. Although we shall not try to be
exhaustive, the more interesting results will all be mentioned. Compared
with the survey article [72] published in 1985 there are here several
new chapters reflecting the achievements of the last years. Moreover,
some older results have been strengthened in the meantime. For
applications of the Baire category theorem not very surprising, we
discover sometimes rather strange objects, whose existence was un-
known before.

(*) Fachbereich Mathematik, Universitit Dortmund, 46-Dortmund, RFG.
(**) Nota giunta in Redazione 1'11-I-1989.
This article was presented at the « Convegno di Analisi Reale e Teoria
delle Misure» held in Capri, during September 12-16, 1988, and was sup-
ported by M.P.I.
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A set in a topological space is called mowhere demse, if its closure
has empty interior. Any countable union of nowhere dense sets is
said to be of first category. If a set is not of first category, then it is
of second category. A topological space, each open set of which is of
second category, is called a Baire space. A set in a Baire space is
called residual if its complement is of first category.

The space R? with the Euclidean distance, the space # of all
compact sets in R? with the Hausdorff distance d, its subspaces I
and #* of all starshaped sets (always supposed compact) and of all
compact convex sets respectively, the subspaces of o of all convex
bodies and of all convex surfaces (i.e. d-dimensional members of 2 *
and their boundaries, respectively), any convex surface with the
intrinsic metrie, are all examples of Baire spaces.

We say that most and typical elements of a Baire space enjoy a
certain property, if those not enjoying it form a set of first category,
i.e. if those enjoying it form a residual set.

In a metric space (X, o) we call a set M porous at x € X if there
is a positive number o such that for any positive number &, there is
a point y in the open ball B(x, &) of centre # and radius ¢ such that

B(y, ao@,y) N M =9 .

A set which is porous at all points of X is simply called porous [13], [74].
If, for some x € X, the above number o can be chosen as close to 1
as we wish, the set M is called strongly porous at x. A set which is
strongly porous at every point is said to be strongly porous.

A countable union of porous sets is called o-porous. We say that
nearly all elements of a metric Baire space have a certain property,
if those which do not enjoy it form a o-porous set [74].

By Lebesgue’s density theorem, any prous set in R¢ is of measure
zero. Therefore, any o-porous set in R? is of first category and of
measure zero. Thus, o-porosity is a convincing smallness attribute
and has the advantage to be available in spaces like #*, in which
no geometrically useful Borel measure exists (for a precise formula-
tion see C. Bandt and G. Baraki [5], Theorem 3).

1. — Smoothness and strict convexity of convex surfaces.

The closure of an open convex set in R? is called a convex body,
its boundary a conver surface. A convex surface needs not be smooth,
but must be smooth almost everywhere, with respect to the (d — 1)-
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dimensional Hausdorff measure, as K. Reidemeister [62] proved in 1921
for d = 3. For a more precise result and higher dimension, see [3].

Klee’s first result mentioned in the Introduction asserts that most
convex surfaces are smooth and strictly econvex. We have the fol-
lowing strengthening via porosity:

THEOREM 1 [73]. Nearly all conver surfaces are smooth and strictly
convex.

A generalization of Klee’s result in the planar case, for convex
curves on arbitrary 2-dimensional convex surfaces, is reported in
Section 3.

2. — The curvature of convex surfaces.

Nearly all convex surfaces are smooth, hence of class O

The question whether a typical convex surface also belongs to O2
was answered by Gruber [20] in the negative.

Let # be a point of the convex surface S at which S is smooth.
At x we consider the tangent direction 7, the normal section of § in
direction 7 and the lower and upper radii of curvature g;(x) and of(z)
of the normal section (see [5], p. 14). The numbers

viw) = gi(@) ", (@) = gi@)}
are the lower and upper curvatures of S at # in direction 7. If they
are equal, the common value y°(2) is the curvature of 8 at # in
direction 7.

By a theorem of A.D. Aleksandrov [1] (H. Busemann and W. Fel-
ler [11] for d = 3), on every convex surface there exists a finite cur-
vature a.e. in every tangent direction. How behaves the curvature
of typical convex surfaces?

G. de Rham studied more than 30 years ago the following
remarkable kind of convex curves in R?: Take a convex polygon,
then the two points on every side dividing it into three equal parts.
Consider the convex hull of all these points and its boundary polygon.
Repeat this procedure. The intersection of all these infinitely many
convex sets is a convex set the frontier of which is a smooth convex
curve with vanishing curvature a.e., as de Rham has shown [63].

There is another simple way of producing convex curves with
vanishing curvature a.e.: Consider any singular function (also called
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Vitali function) i.e. a strictly increasing continuous function
f: [0,1] - R with f= 0 a.e. Then [f is a convex function, the
graph of which has a vanishing curvature wherever ([f)”= 0,

namely a.e. Unexpectedly, it turns out that this curvature behaviour
is typical for convex curves.

R. Schneider [55] proved that on most convex surfaces there is
a dense set of points # with yj(x) = 0 and yl(») = o in every tan-
gent direction 7. It can be shown that the above set is even residual.

The following theorem describes the curvature behaviour of typical
convex surfaces:

THEOREM 2 [65], [66], [76]. For most convex surfaces S,
(i) at each point xe S,
i@ =0 or yi@) = oo
for any tangent direction T in x,
(ii) Y (@) = 0 a.e.
for amy tangent direction v in w,
(iii) at most points xe 8,
vi@) =0 and y(@) = oo
for any tangent direction T in x,
(iv) {(@, 7): y"(®) = oo}
18 umcountable and dense in the sphere bundle associated to S,
() {@7): 0 = ¥ (@) < ;@) = yi(e) < yi(2) = oo
18 uncountable and dense in the sphere bundle associated to S.

Since the Dupin indieatrix at any point is convex if it exists, from
Theorem 2, (iv) it follows that at many points # on a typical convex
surface there is a (d — 2)-dimensional open halfsphere H in the unit
sphere of all tangent directions in @, such that 9°(z) = oo for all
7€ H(d>3). The following question is still unanswered.

PrOBLEM 1. Do most convex surfaces in R? (d>3) possess a point
with existing and infinite curvature in every tangent direction?
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3. — Geodesics and convexity on convex surfaces.

For any two points of a convex surface in R? there exists at least
one shortest path joining them. Such a path is called a segment.
A curve which is locally a segment is called a geodesic (see for a precise
definition [10], p. 77). By a simple closed geodesic we understand a
geodesic which is a closed Jordan curve.

A set M in a convex surface which, for any pair of points @, y € M,
contains a segment joining # to v, is called comvexr. A connected set
which is the boundary of a convex set in a convex surface Sc R?
is called comvexr curve on §. A convex curve on a convex surface in R?
is called strictly conver if it contains no segment.

Two points of a convex surface which are joined by more than one
segment are called conjugate. A point of a convex surface which is
not for any segment interior (that is different from its endpoints)
is called an endpoint of the surface. It is well-known that in a certain
tangent direction at a point of a convex surface may not start any
segment. Such a tangent direction is called by Aleksandrov singular.

Every conical point of a convex surface is an endpoint, but there
also exist smooth endpoints (see [2], p. 58-59). However, a convex
surface of class O2 has no endpoints.

Concerning the singular directions, Aleksandrov proved that there
are smooth convex surfaces with a dense set of singular directions at
a certain point ([2], p. 59). But he also showed that, for any convex
surface in R3, at each point, the set of singular directions has measure
zero in the associated circle 8 of all tangent direction ([2], p. 213).
Also, at no point of a convex surface of class C? there is any singular
direction.

The following theorem describes the typical convex surfaces with
respect to their endpoints and singular directions. It shows that there
are unexpectedly many endpoints and illustrates once again the pos-
sible contrast between the measure-theoretical and the topological
behaviour.

THEOREM 3 [69]. On most convex surfaces S c Re,
(i) most points of S are endpoinis,

(ii) for d =3, at every point of S, most tangent directions are
singular.
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Concerning the conjugate points on a convex surface we have the
following result.

THEOREM 4 [84]. Let S be any convex surface in R3 and x € 8.
Then wearly all points of 8 are wot conjugate to .

In higher dimensions the situation is not yet clarified for all convex
surfaces. However, Gruber [25] could settle the typical case.

TEEOREM 5. If Sc Ré is a typical comvex surface or Se O° and
if x € 8 then most points of S are mot conjugate to w.

The proof in case S e (° (similar to the proofs in [25] and [84])
goes as follows:
Let S c R? be a convex surface of class C3, s 8§ and

8, = {y€8: 3 segments F, G from z to y with é(F, G)>m™"}.

We shall prove that 8, is nowhere dense. This finishes the proof,
because then the set |J S, of all points conjugate to = is of first
category. iy

First, 8, is closed. Indeed, if y,e€ 8., F, and G, are segments
from # to ., O(F,, G,)>m* and y, —y then, for a subsequence
of indices {n}:>, {F,}~, and {G,}, converge, the limit curves are
segments (see [10], p.81), say F and @, and moreover oF, G)=m.

Now let O be open in 8. Take y, € O\ {«} and consider a segment
F, from x to y,. Let y, €0 N F, be different from z and y,. If ¥,
and 2 were conjugate then a segment G,¢ F, from y, to # would
exist. Let H, be the subsegment of F, from y, to y,. Then the geo-
desics H, U G, and F, would have the arc H, in common. But the
surface S is of class €3, hence the geodesic H, can be extended in a
unique way, being the unique solution of a differential equation.
This contradiction shows that y; and # are not conjugate, which yields

O\ 8S,. # 0, whence 8, is nowhere dense.
| LS

PROBLEM 2. Prove that for any convex surface § in R? and any
point z € 8, most points of S are not conjugate to z (d>4).

Thus, in many cases, possibly always, the set of points conjugate
to some point on a convex surface is small. The following result first
proved by Gruber[25] for d = 3 shows that typically the set of
points conjugate to some point on a convex surface cannot be too
small, however.
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THEOREM 6 [84]. For most comvex surfaces Sc R* and any point
z € 8, the set of points conjugate to x is dense in S.

We next pass to a global problem, which attracted for a long time
a lot of attention: the number of closed geodesics (simple or not) on
a closed surface, in our case a convex one.

Let d = 3. Arguments of Aleksandrov ([2], p. 377, 378) show that,
with the obvious identification between the space 2, of all polytopes
in R® with » vertices and a set in R3», and with the naturally induced
measure on #,, the boundaries of almost all polytopes in £, admit
no simple closed geodesic. On the other hand, by a well-known result
of L. Lusternik and L. Schnirelman [45], there are at least 3 distinct
simple closed geodesics on any sufficiently smooth convex surface.
The typical case was settled by Gruber. He recently proved the fol-
lowing very beautiful theorem.

THEOREM 7 [26]. Most convexr surfaces in R® admit no closed geo-
desics.

This result is considerably harder to prove than the corresponding
result restricted to simple closed geodesics, see [25].

It should be mentioned here that, by a result of A. Pogorelov [50],
on any convex surface in R® there are at least three quasigeodesics.

About the length of geodesics on typical convex surfaces, inspite
of the lack of knowledge about the situation for arbitrary convex
surfaces, we have the following surprising result.

THEOREM 8 [83]. On most convex surfaces im R® there are arbi-
trarily long geodesics (of finite length) without self-intersections.

The space € of all convex curves on a convex surface in R® with
the Hausdorff metric derived from its intrinsic metric is a Baire space.
It makes sense to ask whether the typical behaviour of such convex
curves parallels the typical behaviour of convex curves in R? Are
they, for example, smooth and strietly convex? It is rather obvious
that smoothness cannot be a generic property for all convex surfaces §:
Take, for instance, S to be polytopal. But in smooth S most convex
curves are indeed smooth. By Theorem 1 this is true for most S.
Also the strict convexity is not for all § a generic property of convex
curves in 8. It is, however, a generic property in case the set ¢ of
all convex closed geodesics has empty interior in the space % of all
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convex curves in S. This is a rather weak requirement. It is, by
Theorem 7, trivially fulfilled by most convex surfaces Sc R: If
int ¢ 0 then #\int ¢ is also a Baire space.

THEOREM 9 [75]. If S is a smooth comver surface in R3? them most
convex curves iw S are smooth. If S is a conver surface in R® then
most elements of E\int & are strictly convex.

PrOBLEM 3. Generalize Theorem 9 to arbitrary dimension d>3.

4. — The shadow boundaries of convex bodies.

Let K be a convex body in R* and M c R? a set viewed as a light
source. The shadow boundary I'(K, M) of K with respect to M is the
set of all points ¥ e bd K such that every line through y which meets M
misses int K.

The cases when the light source M is a point in P? or a flat of di-
mension at most d— 3 in the hyperplane at infinity have been re-
peatedly considered in the literature. We present here some generic
properties of the shadow boundaries.

We shall speak below about typical M c P?\ R¢ where M is a
k-dimensional flat. This will always mean that the (& 4 1)-dimensional
linear subspace of R? determined by M is typical in the Grassmannian
manifold %,,, of all (k - 1)-dimensional linear subspaces of Re.

Let I be a (d — 3)-dimensional flat in the hyperplane at infinity.
Congider the 2-dimensional subspace P of R? orthogonal to the (d — 2)-
dimensional subspace of R¢ determined by F. If K is a convex body
in R4, let py: K — P be the orthogonal projection. If K is strictly
convex, Py |ipa p,cx) 18 single-valued and continuous (rlbd means relative
boundary); the Jordan curve p;'(rlbd p,(K)) is precisely the shadow
boundary I'(K, F') of K with respect to F. I'(K, I') is called singular
if all its tangent lines (if any) meet F. The shadow boundary I'(K, F)
also determines a real function f: rlbd px(K) — R defined as the dis-
tance from a point @ e rlbd p,(K) to the single point of py'(w). Ob-
viously, I'(K, F') is singular if and only if f is nowhere differentiable.
Since such a function is not of bounded variation, a singular I'(K, F')
is nonrectifiable.

THEOREM 10 [77]. Let Fc Pé be a fized or a typical (d— 3)-
dimensional flat at infinity. For most convexr bodies K, I'(K, F) is
singular, hewce nonrectifiable.
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P. Gruber and H. Sorger considered the case when M contains a
single point # e P? and proved the following result which parallels
the assertion of Theorem 10 regarding the generic infinite length of
shadow boundaries, and confirms their (naturally expected) Haus-
dorff dimension d— 2.

TrEOREM 11 (Gruber and Sorger [29]). Let & be a fiwed point in
P¢ or a typical point of R or of P\ R®. For most convex bodies
KcR’, if ¢ K then I'(K, {w}) has Hausdorff dimension d— 2 and
infinite (d — 2)-dimensional Hausdorff measure.

The case when # is a given point in P? was not explicitly stated
in [29] but follows from the same arguments. The case of a single
point light source is more complicated because the shadow boundary
is then higher dimensional. In the proof, an integral geometric surface
area measure was used since Hausdorff measures lack a certain semi-
continuity property. Still open is the following problem, first for-
mulated in [29].

ProBLEM 4. Is the (d— 2)-dimensional Hausdorff measure of
I'(K, {#}) for most convex bodies K c R* and most points v¢ K
non-g-finite?

There is a remarkable contrast between the above theorems and
measure-theoretical results of P. Steenaerts [59], D. G. Larman and
P. Mani-Levitska [39]. Denote by F(x) the k-dimensional flat in the
hyperplane at infinity corresponding to o€ %,,, and let W, be the
k-dimensional Hausdorff measure. By results in [59] and [39], for
any convex body Kc R¢,

(T (K, F(oc))) < oo

for almost all € %, ,_, with respect to the Haar measure. Thus, for
typical convex bodies the contrast is perfect!

Since the boundary of a (d— 1)-dimensional convex body has
finite (d — 2)-dimensional Hausdorff measure, it follows from Theo-
rem 11 that for most convex bodies K c R? and most points z e R¢
or € P\ R¢, I'(K, {w}) is not contained in a hyperplane.

In 1986 F. Hering conjectured that there are convex bodies K c R¢
such that, for no point # € R™\ K, I'(K, {#}) is contained in a hyper-
plane. Indeed, the following is true.

THEOREM 12 [80]. For most comvew bodies K c R?, the shadow
boundary I'(K, {}) is contained in a hyperplane for no point © e P™ K.
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Mani-Levitska [46] proved that—in the case of parallel «light
rays »—there are classes of convex bodies K which can cover all
their shadows (i.e. there is for any « € R*\ {0} a rigid motion ¢ such
that ¢(p,. K)c K), and classes of convex bodies which cannot cover
all their shadows. He also observes (private communication) that
every convex body which can cover all its shadows must have a planar
shadow boundary. This together with Theorem 12 shows that most
convex bodies cannot cover all their shadows. In fact more can be
shown: Those convex bodies which can cover all their shadows form
a nowhere dense set.

Results, generic or not, on shadow boundaries with respect to
flats of positive dimension lying in R? await to be discovered. Also,
light sources M which are not flats might be of interest.

5. — Normals to convex surfaces.

‘We shall now consider normal lines to convex surfaces. E. Heil [34]
proved that any convex surface in R? admits a point lying on at least
6 normals to the surface (d>3). In the planar case, for any convex
curve there is a point belonging to 4 normals to the curve.

For any usual surface, the points lying on infinitely many normals
are exceptional. However, this is not true for typical convex surfaces,
as the following surprising result shows.

THEOREM 13 [68], [7T1]. For most conver surfaces, most points of
R? lie on imfinitely many wmormals.

In Problem 4 from [72] we asked whether for most convex surfaces
there is any point lying on uncountably many points. I. Barany
and the author proved that this is indeed the case. In fact the fol-
lowing more detailed deseription was obtained. Let y(z) be the set
of directions (unit vectors) of all normals passing through e R?.

THEOREM 14 (Barany and Zamfirescu [6]). Let Z c R? be a count-
able set. For most convex suefaces the following is true: For any point
x € Z the set y(x) is perfect and for any point x € R® the set y(x) is
porous inw S

Recently, M. Laczkovich [38] succeeded to show in the planar case
that, for most convex curves, most points in R? lie in uncountably
many normals. Unfortunately, his proof is not extendable to higher
dimensions.
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ProBLEM 5. Do most points of R? lie on uncountably many nor-
mals to most convex surfaces (d>3)?

In the spirit of Theorem 13 is the following reflection result. Let C
be a smooth convex curve in R? and consider z,y € R* and Mc C
with card M = «. If, for each z€ M, xz and yz make equal angles
with C, we say that  sees o images of y. In general it can only be said
that a point sees two images of another point. For typical convex
curves a stronger assertion is wvalid.

THEOREM 15 [68]. For most convex curves in R2, every point of R?
sees N images of most other points, and for most pairs (z, y) € R2 X R2,
@ sees N, tmages of y.

Also this result was not yet generalized to R¢.

6. — Diameters of convex hodies.

A diameter of a convex body K c R¢is a chord of K such that K
admits parallel supporting hyperplanes at its endpoints.

It follows from a result of A. Kosinski [37] that in every convex
body there is a point lying on at least three diameters. This state-
ment is possibly improvable for d>3, but nothing better seems to
be known at present.

In the typical case many more diameters must meet together.
We have the following result, first proved in the planar case by a
different method in [70].

THEOREM 16 (Barany and Zamfirescu [6]). For most convex bodies
K c R% most points of K lie on infinitely many diameters.

Let # be a point of the convex body K. We denote by ¢(z) the
set of all directions of diameters of K passing through x. The generic
aspect of @(x) is described by the following theorem.

THEOREM 17 (Barany and Zamfirescu [6]). Let Zc R? be count-
able. For most comvex bodies K c R4, the following is true: At each
point v € Z N K the set ¢(x) is perfect and ot each point x € K the set
@(8) is porous in S*1L

It is remarkable how Theorems 16 and 17 parallel Theorems 13
and 14 respectively.
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In 1965 P. C. Hammer [33] raised the question whether there
exist a convex body K and a point ze€int K such that the set E(z)
of all ratios into which #z divides the various diameters through # is
uncountable. A. S. Besicovitch and T. Zamfirescu [7] answered the
question by providing such a convex body and such an interior point.
In fact this is a generic property of convex bodies:

THEOREM 18 (Barany and Zamfirescu [6]). Let Zc R? be count-
able. For most conmver bodies K Cc R?, at each point v € Z N K, the set
R(x) is uncountable.

Let M, (respectively T,) be the set of all interior points of the
convex body K c R¢ lying on at least (respectively precisely) « dia-
meters. Generic connectivity properties of M, have been investigated,
but only in the planar case:

THEOREM 19 [70]. For most cowvex bodies in R?, the set M, is con-
nected for every a<¥N, and the set Ty is totally discommected for every
<< No-

7. — Circumscribed balls, shells and ellipsoids.

The union of two concentric spheres is called a shell.

A sphere 8§(8) is said to be circumseribed to M c R*if M c conv S(M)
and S(M) has minimal radius.

A shell J&(8) is said to be circumscribed to M c R?if M lies between
(and, on) the two spheres forming JE(S) and the difference between
their radii is minimal.

An ellipsoid &(S) is said to be circumseribed to M c Re if
M c conv §(8) and conv &(S) has minimal volume.

It is easily checked that, for any convex surface S c R?, the sets
of contact points satisfy

2<card (8 N 8§(8)) <e,
4<card (8 N () <c,
d 4+ 1<card (8 N §(8)) <c.

and that any cardinal number between the given lower and upper
bounds is realizable.

Can the number of contact points be more precisely estimated
in the case of typical convex surfaces? Yes, indeed, the above number
can be exactly determined in the typical case!
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THEOREM 20. For most convex surfaces S c R? the following holds:

card (S N 8(8)) = d + 1[67].
card (8 N J¥(8)) = d + 2 (A. Zueeo [86], [87]) .
card (8 N §(8)) = d(d + 3)/2 (Gruber [22]) .

The third result in Theorem 20 had been jointly conjectured by
Gruber and the author. Its proof in [22] involves ingenious, not easy

arguments.
Notice that the set of all surfaces S, such that the contact points

are fewer than one of the above numbers, is nowhere dense, while the
set of those surfaces S, such that, for any given « larger than one of
the above numbers, the corresponding number of contact points equals
o, 18 dense.

8. — Approximation by polytopes.

The set 2, of all polytopal surfaces in R* with at most n vertices
is closed in /. By Blaschke’s selection theorem, for any convex sur-
face S and n > d, there exists P* e £, such that

o(8, P*) = »(8,n),
where
»(S, n) = int 6(8, P).
PePn
Such a polytopal surface P* is called best approwimation of 8.
Clearly, the best approximations of a convex surface need not be
unique. But P. Gruber and P. Kenderov proved the following result.

THEOREM 21 [28]. For d = 2 and any w > 3, most convex curves
admit a unique best approximation.

A refinement of this result was given by V. Zhivkov [85]. R.
Schneider and J. Wieacker [51] and, independently, Gruber and
Kenderov [28] studied the asymptotic behaviour for n — oo and
found that it is typically very irregular:

THEOREM 22. Let f: N — [0, o) be arbitrary and g: N — [0, co)
satisfy g(w) = o(1/n®@V) as w — oo. Thew, for most convexr surfaces S,

»(8, m) < f(n)
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for infinitely many n and

v(8, n) > g(n)

for infinitely many w.

Analogous results have also been obtained with respect to other
metrics than Hausdorff’s [28].

Seen more abstractly, a best approximation in a given set of some
element is a point (from the given set) closest to that element. This
explains the special interest in the nearest point mapping, for which
we describe some generic properties in the following section.

9. — Nearest point mapping.

‘We shall consider here the nearest point mapping px defined on R?
as the multi-valued function:

px(e) ={y e K: o —y| = min [z —z]},

where K is a compact set in R4 In particular the set K can be con-
vex. In that case (and only then) the function px is single-valued
everywhere. A natural question to ask is about the proportion between
the set on which pg is single-valued and the set on which Py is properly
multi-valued. The answer is known and the same from both points
of view, measure-theoretical and topological (via Baire categories):
For any compact set K, the nearest point mapping px is not single
valued on a set of measure zero and first category [58]. Here we can
use again the notion of porosity and strengthen the above statement
in the following way:

THEOREM 23 [82]. The nearest point mapping is single-valued at
nearly all points of R°.

A question which then comes into one’s mind is whether
K+ = {we R*: card p,(v) > 1}

must even be nowhere dense or not. That this need not be the case
is shown by the next result.
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THEOREM 24 [82]. For most compact sets K c R?, the nearest poimt
mapping px 18 not single-valued at a dense set of points.

If the boundary of K is smooth enough K™ can no longer be dense.
This is shown by the next theorem.

THEOREM 25 [82]. If K c R? is closed and bd K is an analytic
Jordan curve thenw px is not single-valued ow a nowhere dense set.

While extending this to higher dimensions is only a technical pro-
blem, more interesting and possibly difficult is to reduce the degree
of smoothness of bd K until a further reduction would lead to a wrong
statement. We formulate this as a problem.

PROBLEM 6. Prove, for a minimal integer %, that for any continuum
K c R® with a boundary of class C* the function p, is not single-valued
on a nowhere dense set.

Of a special interest are also the differentiability properties of the
nearest point mapping px. As E. Asplund proved in [4], px is not
only single-valued almost everywhere, but also Fréchet differentiable
almost everywhere. From the viewpoint of Baire categories the situa-
tion now changes. We shall see that, for many sets K, px is not dif-
ferentiable at most points outside K.

Let now K be convex. By p,(y) we denote the Fréchet derivative
of pr at y € R and by Py(y) the orthogonal projection of R? onto the
hyperplane

H(y) = {#€ R*: <y — px(y), 2> = 0} .
It is known [16] that the operators p;(y) and Pg(y) satisfy:
Dx(¥)oPe(y) = pp(y) = Pe(y)op,(y) -

The generic aspect of the Fréchet derivative is described by the
next theorem.
THEOREM 26 [81]. For most conver bodies K C R?,
(i) p;(y) = P_(y) for any y € pz*(®) and almost every x € bd K,
(ii) p.(y) does mot exist at most points y ¢ K.

The existence of convex bodies K for which the requirement (ii)
is satisfied has been previously verified for d = 2 by L. Zajicek [64].
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In the planar case additional information on the generic diffe-
rentiability properties of px is provided by the following result.

THEOREM 27 [8L]. For most convexr bodies K c R2,

(i) px has mo directional derivative in any mwonnormal direction
at most points outside K,

(i) p,= 0 at a set of points dense in R\ K.

10. — Billiards.

We regard any smooth convex body K in R? as a billiard table.
A point playing the role of a billiard ball will move along straight
lines in the interior of K and reflect obeying the light reflection law
at the boundary points of K. The broken line with infinitely many
(not neecessarily distinet) vertices described by such a point is called
trajectory. A compact convex set C cint K is called a caustic if any
trajectory which touches K once touches it again after the next reflec-
tion. A strange phenomenon, that of a trajectory with finite length,
was studied by B. Halpern [31] and Gruber [24]. The phase space
ph K associated to K is, by definition, the set

{(p, v): pebdk,ve S, v, n(p)) < 0} ,

where n(p) denotes the exterior normal unit vector of bd K at p. For
(p,v) eph K, let T(p,v) denote the trajectory starting at p in di-
rection v.

It is known that there are convex bodies admitting no caustie,
so are for example all convex bodies which are not strictly convex.
In R? all convex bodies whose boundaries are sufficiently smooth
(of class C7[14]; the smoothness degree could gradually be decreased
from class €% to class (7, see [40], [41], [42], [48], [64], [9]) and have
positive curvature admit caustics. For d>3 no convex body different
from an ellipsoid and having a caustic seems to be known. Gruber [24]
conjectures that they do not exists.

Concerning the trajectories of finite length, it is known that convex
bodies of class C® have no such trajectory. This was proved by
Halpern [31] in R? and by Gruber [24] for d>3.

Let § be the Borel measure defined by

B(B) = — [<v, n(p)y dox
B
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for any Borel set Bc ph K, where ¢ and v denote the surface area
measures on bd K and 8- respectively. The next result shows that,
in any convex body, a trajectory of finite length is rather exceptional.

THEOREM 28 (Gruber [24]). Let K c R? be a comver body. For most
and, B-almost all pairs (p, v) € ph K, the trajectory T(p, v) has infinite
length.

The generic situation is also clarified. The following result of
Gruber shows that having caustics or trajectories of finite length is
untypical.

THEOREM 29 [24]. Most convex bodies im R? contain mo caustic and
no trajectory of finite length.

The vertices of a trajectory G in a convex body K and the direc-
tions of its line segments determine a certain infinite subset §(B)c
cph K. Theorem 29 is complemented in the planar case by the
following:

THEOREM 30 (Gruber [24]). For most convew bodies K c R* and
most pairs (p, v) € ph K, the set S(T(p, v)) is dense in ph K.

It follows immediately from Theorem 30 that, for most convex
bodies K c R? and most pairs (p,v) e ph K, the trajectory T(p, v) is
dense in K.

For more details on this topic the reader should consult [24].

Another type of trajectory will appear in the next section.

11. — Tomography.

An X-ray picture of a convex body taken in a certain direction
may be identified with its Steiner symmetral in that direction. In
recent years P.C. Hammer’s problem [32] of determining a convex
body from its X-ray pictures was investigated by R. Gardner and
P. McMuller [18], Gardner [17], K. Falconer [15] and A. Vol&ié [61].
An earlier result is due to O. Giering [19]. Gardner and McMullen
proved that there are four directions such that the corresponding X-ray
pictures distinguish between all convex bodies, and that no three direc-
tions can do this. Giering proved that, given a plane convex body K,
there exist three directions depending on K, such that the correspond-
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ing X-ray pictures- distinguish K from any other convex body. He
has also shown that two directions are in general not enough.

Convex bodies with the same X-ray pictures in two fixed directions
as a given one were called ghosts in [60], in analogy with the ghost
densities from computerized tomography [44].

The characterization of those convex bodies which are uniquely
determined by two X-ray pictures is still open. We mention that the
analogous problem for measurable sets has been solved by G. G.
Lorentz [43].

The existence of ghosts is very much related to the existence of
inscribed broken lines whose line-segments are parallel to the axes.
The importance of these broken lines was first pointed out by
Giering.

Let V(K) be the union of the vertex sets of all these broken lines
inscribed. in K. The following result of Vol¢i¢ and the author suggests
that there might be many ghosts in the space of all convex bodies.

THEOREM 31 [62]. For most convexr bodies K c R2, the set V(K) is
nonwempty and mowhere dense in bd K.

However, the next results of the same authors shows that in fact
for most convex bodies X-ray pictures in two given directions are
enough to distinguish them from all the others.

THEOREM 32 [62]. Most convex bodies in R? are not ghosts.

This settles previous independent conjectures of Vol¢i¢ and Gru
ber [23].

12. — Compact sets.

The typical compact set is rather thin. This is not very surprising.
In fact rather standard arguments show that it is both of measure
zero and of first category. This suggests, of course, the question
whether it is also porous. In answering this question we shall
exceptionally enlarge our usual frame R4,

THEOREM 33 [74]. In a complete convexr metric space, most compact
sets are strongly porous. In a Banach space, nearly all compact sets
and nearly all closed bounded sets are stromgly porous.

Theorem 33 has not been stated this way in [74], but is an im-
mediate corollary of Theorems 1, 2 and 3 in [74].
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For recent refinements of Theorem 33 see Gruber’s Theorems 2
and 3 in [27]. The Hausdorff dimension of typical compact sets is
computed by the next result which follows in the separable case from
A. Ostaszewski’s paper [49]. This is also proved by Gruber in [21],
where the separability assumption can be dropped, as he remarks
in [27].

THEOREM 34. In a complete meiric space, most compact sets have
Hausdorff dimension zero.

This result implies that most compact sets in a complete metric
space have topological dimension zero and are therefore totally discon-
nected. This together with the easy remark that most compact sets
in a connected complete metric space are perfect shows that, in such
a space, they are in fact Cantor sets.

Now we come back to the Euclidean space R¢ and consider the
Baire space " of all compact sets in Re. J. A. Wieacker studied the
generic properties of the convex hull of an element in &#. In analogy
to a generic property of convex bodies, we have the following result.

THEOREM 35 (Wieacker [63]). For most C e, bdconv C is of
class O, but mot of class C2.

Note that strict convexity is not a generic property of the convex
hull of compact sets.

Also different from the generic aspect of convex bodies is the ex-
tremal aspect of the convex hull of typical compact sets. First let
us recall two notions important in Convexity. A point # in a con-
vex body K c R? is called

(i) ewtreme if K {w} is convex,

(ii) ewposed if {x} = K N H for some hyperplane H.

THEOREM 36 (Wieacker [63]). For most C €X', the ewtreme points
of conv C form a Cantor set and the emposed points of conv C form a
set homeomorphic to the space of all irrational numbers.

13. — Starshaped sets.

In R¢, the space J of all starshaped sets, always considered
compact here, being closed in the complete space of all compact sets,
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is a Baire space too. As in the case of compact sets typical starshaped
set are rather thin, as shown by the next theorem.

THEOREM 37 [78]. For most starshaped sets, their orthogonal projec-
tion on any 2-dimensional flat is mowhere dense.

It follows from Theorem 37 that a typical member 7 of J is
nowhere dense and has a kernel consisting of a single point k(T').
Using porosity, the first assertion was strengthened in the following
manner.

THEOREM 38 (Grruber and Zamfirescu [30]). Most starshaped sets
TeJ are wot porous at k(T), but strongly porous amywhere else.

The exceptional role of k(7) can also be seen in the next result
on local connectedness.

THEOREM 39 [78]. Most starshaped sets T € T are wot locally con-
nected at any point different from E(T).

Since, typically, the kernel of 7 € Z consists of the single point
k(T), generic properties of the following sets are of interest:

o el ) )
V(T) = {m xeT\{k(T)}}

and

UT)= {|e— k(T)|: ve T, Vy € T\ {a}, » ¢ yk(T)} .

Also, set I(T) = [0, max U(t)]. The following result is due to Gruber
and the author.

THEOREM 40 [30], [78]. For most starshaped sets T € T,

(i) V(T) is dense, uncountable and of first category in S,
(i) U(¢t) is dense im I(T).

PrOBLEM 7. Describe more precisely the generic topological
aspect of U(T).

From Theorem 38 it follows that most starshaped sets have Le-
besgue measure zero. This suggests the possibility that their Haus-
dorff dimension is less than d. That this is indeed the case we learn
from the following result of Gruber and the author.
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THEOREM 41 [30]. Most starshaped sets belonging to 7~ have Hausdorff
dimension 1 and non-o-finite 1-dimensional Hausdorff measure.

14. — Starshaped surfaces.

Let K be a compact convex set in R? and let 7, be the subspace
of 7 consisting of all compact starshaped sets whose kernels include K.
In case dim K = d, we call the boundary of any T € 7 a starshaped
surface. In polar coordinates it is represented by a Lipschitz function;
hence it is differentiable a.e. Clearly every starshaped surface is
homeomorphic to 8%-1. Being closed in the complete space 2 of all
compact sets, 7 and the space of all starshaped surfaces are Baire
spaces.

Suppose dim K = d. We say that a point « € bd 7, where T € I,
sees only K if oy c T implies the existence of a point ze K collinear
with # and y. The strange aspect of the typical starshaped surfaces
is pointed out in the next theorem.

THEOREM 42 [79]. Assume dim K — d. For most starshaped sur-
faces 8,

(i) most point of S see only K,

(ii) for almost all points x € S, there is a supporting hyperplane
of K which is tangent to S at x.

It follows that most members of 7, have precisely K as kernel.
Since the convex body K was chosen arbitrarily, this places in a new
light an old question of L. Fejes Tdéth, whether every compact con-
vex body is the kernel of a nonconvex set. Constructive answers to
Fejes Téth’s question were given in the plane by K. Post [51], in
Banach spaces by Klee [36] and, independently, in Euclidean spaces
by M. Breen [8]. I am indebted to Klee for having suggested the con-
nection between Theorem 42 and Fejes Té6th’s question.

New let dim K = d — 1. While a member of 7 may be locally
disconnected and different from the closure of its interior, the fol-
lowing theorem reveals a surprisingly nonpathological typical aspect.

THEOREM 43 [79]. Assume dim K = d— 1. Most members of Ty
are homeomorphic to a ball.

For generic properties of members of .7 in the case of a lower-
dimensional convex set K, see [79].
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15. — Convex sets of convex sets.

The convexity in the space Z#* of all compact convex sets in R¢
was not yet intensively investigated. Let A4, Be ™. Then

{Ad 4+ (1— A)B: 2€[0,1]}

is called the segment of endsets A, B. A set &/cA™* is said to be
comvex if, for any two sets A, Be ., the segment of endsets A4, B
lies in 7. For a convex set o/ c X*, A€ 7 is called an extreme ele-
ment of o if A belongs only as an endset to segments in 7. Let
ext o/ be the set of all extreme elements of 7.

Let C be the space of all convex closed bounded sets (not ele-
ments!) in 2#*. These notions are considered with respect to the
Hausdorff distance §. We equip C with Hausdorff’s metric derived
from 8, too. Since #* is complete, the space 2% of all closed bounded
sets in J* is also complete. Also G, being closed in 2*°, is complete
and therefore a Baire space.

The following result presents generic properties of members of C.
Its second part, due to T. Schwarz and the author, confirms a conjec-
ture in [72].

THEOREM 44. For most members </ € C,
(i) o is mowhere dense in A* [72],
(ii) most elements of <7 are extreme [57].
Still without an answer remained the following problem from [72].

ProOBLEM 8. Prove (or disprove) that, for most o7 € C, the extreme
elements of .o/ form an arcwise connected set.

Acknowledgement. The author is indebted to Professor P. Gruber
for several bibliographic hints and other valuable remarks.
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