CONJUGATE POINTS ON CONVEX SURFACES ## TUDOR ZAMFIRESCU On a convex surface $S \subset \mathbb{R}^d$, two points x, y are *conjugate* if there are at least two shortest paths, called *segments*, from x to y. This paper is about the set of points conjugate to some fixed point $x \in S$. First we make a few simple remarks in \mathbb{R}^3 . On any convex surface S whose tangent cones have full angle larger than π , for example on any smooth convex surface, for every point $x \in S$ each furthest point of S (in the inner metric) is conjugate to S. However, for such S, there may well be just one point conjugate to a given S is a lense (boundary of the intersection of two congruent balls), on the circle of all points of non-differentiability of S any two points are conjugate. However, if S is a segment on a convex surface S and S is close enough to an interior point of S, then the set of points of S conjugate to S is easily seen to be at most countable. This set is dense on S, if S is a typical convex surface in the sense of Baire categories, which follows from the existence on such a convex surface of a dense set of endpoints, i.e., points not interior to any geodesic (see Theorem 1 in [7]). The same is true for intrinsic circles around S instead of S (see the Corollary in [7]). These remarks can make the reader eager to know more about the set of all conjugate points of some given point or a convex surface. When speaking about a property P shared by several elements of a Baire space, we say that *most* or *typical* elements in the space have P if those without P form a set of first Baire category. For results on typical convex bodies see the survey [10]. P. Gruber [5] showed that on most convex surfaces S, for any point $x \in S$, most points of S are not conjugate to x. Moreover, he proved that, for d = 3, on most convex surfaces S, for any point $x \in S$, the set of points conjugate to x is dense in S. We shall show here that, for d = 3, the first result can be extended to all convex surfaces and complemented by the corresponding measure-theoretic statement. Concerning the second result, we shall establish it for an arbitrary dimension d, using a short proof which avoids any reference to the mutual position of segments on arbitrary convex surfaces (which is known only for d = 3, see Aleksandrov [1]). To state our first theorem we need the notion of porosity. In a metric space (X, ρ) , a set M is called *porous at* $y \in M$ if there is some $\alpha > 0$ such that, for every $\varepsilon > 0$, there is a point z in the open ball $B(y, \varepsilon)$ of centre y and radius ε such that $$B(z, \alpha \rho(y, z)) \cap M = \emptyset.$$ A set in X is called *porous* if it is porous at all its points, and is called σ -porous if it is a countable union of porous sets [4]. We say that nearly no elements of a Baire metric space have property P if those points enjoying P form a σ -porous set [8]. For results around porosity see the survey [6] and for applications to convexity see [9]. THEOREM 1. On any convex surface $S \subseteq \mathbb{R}^3$ and for any point $x \in S$, nearly no points are conjugate to x. To prove this theorem we need the following elementary lemma. LEMMA. In \mathbb{R}^2 , if $a \neq \pm b$, ||a|| = ||b|| and $c = \frac{1}{2}a + b$, then each point of the triangle Θ with vertices b, 2b, c is closer to the line-segment B = [b, 2b] than to the line-segment A = [0, a]. Proof. We start with two easy remarks. - (a) The line L through b/2 orthogonal to [0, b] separates Θ from 0 since it separates the vertices of Θ from 0: b and 2b obviously, and c because $||b-c|| = ||a||/2 = ||b||/2 = ||b-\frac{1}{2}b||$. - (b) The angle-bisector of the angle a0b separates Θ from a because it cuts [a, 2b] in a point c' such that $||a-c'||/||2b-c'|| = ||a||/||2b|| = \frac{1}{2}$. To prove the lemma we have to consider three cases. Case I. $\langle a, c \rangle \leq 0$. In this case, for any point $x \in \Theta$, by (a), $$d(x, B) \le ||x - b|| \le ||x|| = d(x, A),$$ where d(x, X) denotes the distance from x to X, that is $\inf\{\|x-y\|: y \in X\}$. Case II. $\langle a, c \rangle > 0$ and $\langle a, b \rangle < 0$. In this case let $u \in [c, 2b]$ and $v \in [b, c]$ be such that $\langle b-u, b \rangle = \langle b-c, v \rangle = 0$. Also let Ψ be the triangle of vertices b, c, u. For any point $x \in \Psi$, $$d(x, B) = ||x - b|| < ||c - b|| = ||b||/2 < ||b|| \cos \frac{\pi}{6} < ||b|| \cos \angle b \cdot 0v$$ $$= ||v|| \le d(x, [-a, a]) \le d(x, A)$$ and, for any point $x \in \Theta \setminus \Psi$, by (b), $$d(x, B) < d(x, [-2a, a]) \le d(x, A)$$. Case III. $(a, b) \ge 0$. In this case, for any point $x \in \Theta$, by (b), $$d(x, B) < d(x, [0, 2a]) \le d(x, A)$$. Proof of Theorem 1. Let ρ be the inner metric of S. Denote by S' the set of all points of S at which the full angle of the tangent cone is 2π , i.e., the set of all non-conical points of S. For any point $y \in S$ different from x, let $\alpha(y)$ be the maximal angle at x between two segments from x to y. Clearly $0 \le \alpha(y) \le \pi$ for any y. Let $$S_n = \{ y \in S' : 2^{-n} \pi < \alpha(y) \le 2^{-n+1} \pi \}.$$ Of course, $$(S \setminus S') \cup \bigcup_{n=1}^{\infty} S_n \supset \{ y \in S : x \text{ and } y \text{ are conjugate} \}.$$ We shall prove that S_n is porous for arbitrary n, which will establish the theorem because $S \setminus S'$ is countable. Let $y \in S_n$ and consider the segments Σ_1, Σ_2 from x to y and the domain $D \subset S$ with boundary $\Sigma_1 \cup \Sigma_2$, such that the angle at x between Σ_1 and Σ_2 towards D equals $\alpha(y)$. (See Fig. 1.) For $\varepsilon < \rho(x, y)$ small enough, the intrinsic circle J of all points in S at distance $\varepsilon/2$ from y is a Jordan curve (see [1], p. 383). It obviously intersects Σ_i in precisely one point σ_i (i=1,2), and $J_0 = J \cap \overline{D}$ is a Jordan arc with endpoints σ_1, σ_2 . The continuity of ρ implies the existence of a point $j \in J_0$ with $\rho(j, \sigma_1) = \rho(j, \sigma_2)$. Let Σ_i' be a segment from j to σ_i (i = 1, 2) and Σ a segment from j to x. One of the two angles that Σ makes with Σ_1 and Σ_2 at x is at most $\alpha(y)/2$. Suppose for example that Σ and Σ_1 determine that angle. Let $\sigma_1' \in \Sigma_1$ satisfy $\rho(y, \sigma_1') = \varepsilon$. Consider a segment Σ_1'' from j to σ_1' and a segment Σ'' from σ_1 to the midpoint σ_3 of Σ_1'' . Consider also the segment $\Sigma' \subset \Sigma_1$ from σ_1 to σ_1' , the segment $\Sigma'' \subset \Sigma_1''$ from σ_3 to σ_1' and the segment $\Sigma_1' \subset \Sigma_1$ from σ_1 to x. As we shall see later, for ε small enough, for any point z in the interior of the triangle $\Sigma' \cup \Sigma'' \cup \Sigma'''$ and for any segment Σ_z from z to x, $\Sigma_z \setminus \{x\}$ lies in the interior T of the triangle $\Sigma \cup \Sigma_1' \cup \Sigma_1^-$, whence $\alpha(z) < \alpha(y)/2$. This will prove $T \cap S_n = \emptyset$. Subsequently we shall find a disk in T which is large enough to ensure the porosity of S_n at y. The fact that the metric of S is, locally at y, the planar metric of the tangent cone at y is essentially the only tool we use in the rest of the proof. Choose the origin of \mathbb{R}^3 at y. For simplicity, we shall suppose S to be smooth at y. However, the proof is essentially the same if S is not smooth at y, because then its tangent cone is the union of two halfplanes. Let Π be the supporting plane of conv S at y and denote by p the projection from \mathbb{R}^3 onto Π By Theorem (11.4) in its form (11.6) from [2], for any $\gamma > 0$ there is some $\beta > 0$ such that, for $v, w \in S$, $$|\rho(v, w) - ||p(v) - p(w)|| \le \gamma \max \{\rho(v, y), \rho(w, y)\},$$ if $\max \{\rho(v, y), \rho(w, y)\} < \beta$. It follows that, for $\varepsilon = \beta/3$, $$\frac{\left|\rho(v,w) - \|p(v) - p(w)\|\right|}{\varepsilon} \le 3\gamma, \tag{*}$$ for any $v, w \in S$ at distance at most 3ε from y. Remark that all points $j, \sigma_1, \sigma'_1, \sigma_2, \sigma_3$ have distance at most 3ε from y. Figure 1 Let σ_1^* , $\sigma_1'^*$ be the points on the halfline $L_1 \subset \Pi$ tangent to Σ_1 at y, with $2\|\sigma_1^*\| = \|\sigma_1'^*\| = 1$. Let j^* be the point on the halfline in Π besecting the angle towards D between the tangents to Σ_1 and Σ_2 at y, with $\|j^*\| = \frac{1}{2}$. Put $\sigma_3^* = \frac{1}{2}(j^* + \sigma_1'^*)$. Further, let Δ^* be the largest open disk of Π included in the open triangle T^* of vertices σ_1^* , σ_3^* , $\sigma_1'^*$. Denote by $\Sigma_i^+ \subset \Sigma_i$ the segment from y to σ_i on S, by $\Sigma_1'^+ \subset \Sigma_1$ the segment from y to σ_1' on S, by Σ_i^{+*} and $\Sigma_1'^{+*}$ the corresponding line-segments from y to σ_i^* and $\sigma_1'^*$ respectively (i=1,2), and by Σ'^* the line-segment from σ_1^* to $\sigma_1'^*$. Suppose $\varepsilon \to 0+$. Let λA denote the length of A. From [2], Corollary (11.8), it follows that $\lambda \Sigma_1^+/\|\sigma_1\| \to 1$, whence $\varepsilon^{-1}\|\sigma_1\| \to \frac{1}{2}$. This, together with the fact that the halfline starting at y and passing through σ_1 tends to L_1 , implies $\varepsilon^{-1}\sigma_1 \to \sigma_1^*$. Since $\lambda(\varepsilon^{-1}\Sigma_1^+) = \frac{1}{2}$, $\varepsilon^{-1}\Sigma_1^+ \to \Sigma_1^{+*}$ too. Analogously $\varepsilon^{-1}\sigma_2 \to \sigma_2^*$, $\varepsilon^{-1}\sigma_1' \to \sigma_1'^*$, $\varepsilon^{-1}\Sigma_2^+ \to \Sigma_2^{+*}$ and $\varepsilon^{-1}\Sigma_1' \to \Sigma_1'^{+*}$, whence $\varepsilon^{-1}\Sigma_1' \to \Sigma_1'^{**}$. Let ρ' be the inner metric of $\varepsilon^{-1}S$. $\rho(j,\sigma_1) = \rho(j,\sigma_2)$ implies $$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_1) = \rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_2).$$ By (*), $$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_1) - \|p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_1)\| \to 0$$ and $$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_2) - \|p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_2)\| \to 0.$$ Hence $$||p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_1)|| - ||p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_2)|| \to 0.$$ This, together with $p(\varepsilon^{-1}\sigma_i) \to \sigma_i^*$ and $\varepsilon^{-1} \|\sigma_i - p(\sigma_i)\| \to 0$ (i = 1, 2), implies $$\|p(\varepsilon^{-1}j) - \sigma_1^*\| - \|p(\varepsilon^{-1}j) - \sigma_2^*\| \to 0.$$ (**) Moreover $$\rho'(y, \varepsilon^{-1}j) - \|p(\varepsilon^{-1}j)\| \to 0.$$ This, together with $\rho'(y, \varepsilon^{-1}j) = \varepsilon^{-1}\rho(y, j) = 1$, implies $$||p(\varepsilon^{-1}j)|| \to 1,$$ which, together with (**), proves $p(\varepsilon^{-1}j) \rightarrow j^*$. Since $$\varepsilon^{-1} || j - p(j) || \to 0, \ \varepsilon^{-1} j \to j^*$$ too. From (*) it follows $$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma'_1) - \|p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma'_1)\| \to 0,$$ which, together with $\varepsilon^{-1}j \rightarrow j^*$, $p(\varepsilon^{-1}j) \rightarrow j^*$, $\varepsilon^{-1}\sigma_1' \rightarrow \sigma_1'^*$ and $p(\varepsilon^{-1}\sigma_1') \rightarrow \sigma_1'^*$ implies $$\lambda(\varepsilon^{-1}\Sigma_1'') = \rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_1') \to ||j^* - \sigma_1'^*||.$$ This and the fact that $\varepsilon^{-1}\Sigma_1''$ joins $\varepsilon^{-1}j$ to $\varepsilon^{-1}\sigma_1'$ imply that $\varepsilon^{-1}\Sigma_1'$ converges to the line-segment in Π joining j^* to $\sigma_1'^*$. Analogously, $\varepsilon^{-1}\Sigma_i'$ and $\varepsilon^{-1}\Sigma_i''$ converge to the three sides of the triangle T^* . Also, if Σ_i is a segment from y to j, then Σ_j clearly converges to the line-segment $[y, j^*]$. Suppose now that $\Sigma_z \setminus \{x\}$ meets $\Sigma \cup \Sigma_1' \cup \Sigma_1^-$ for small $\varepsilon > 0$. Then it must meet Σ_1' and, also, Σ_j . Suppose $\rho(z, s) > \rho(z, t)$, where $s \in \Sigma_z \cap \Sigma_j$ and t is a point of Σ' closest to z. Then, for ε small enough, $$\rho(z, x) = \rho(z, s) + \rho(s, x) \ge \rho(z, s) + \rho(y, x) - \rho(y, s)$$ $$> \rho(z, t) + \rho(y, x) - \frac{\varepsilon}{2} = \rho(z, t) + \rho(\sigma_1, x) \ge \rho(z, t) + \rho(t, x),$$ which is impossible. Hence $\rho(z,s) \leq \rho(z,t)$. This implies, by taking the limit as $\varepsilon \to 0$, that, for some point $z^* \in \bar{T}^*$, its distance to the line-segment $[y,j^*]$ is not larger than its distance to the line-segment $[\sigma_1^*,\sigma_1'^*]$. This contradicts the lemma. Thus, indeed, $T \cap S_n = \emptyset$ for ε small enough. Let c^* and δ^* be the centre and the radius of Δ^* . Let c be the point of T with $p(c) = \varepsilon c^*$ and put $$\Delta = \{ u \in T \colon \varepsilon^{-1} p(u) \in \Delta^* \}.$$ For any point $u \in bd \Delta$, $$\varepsilon^{-1}\rho(u,c) - \varepsilon^{-1} \|p(u) - p(c)\| \to 0$$ *u*-uniformly. Since $\varepsilon^{-1} \| p(u) - p(c) \| = \| \varepsilon^{-1} p(u) - c^* \| = \delta^*$, it follows that $\varepsilon^{-1} \rho(u, c) \to \delta^*$ *u*-uniformly. This in turn, together with $\varepsilon^{-1}c \to c^*$, implies $\varepsilon^{-1}\bar{\Delta} \to \bar{\Delta}^*$ with respect to the Hausdorff metric. Then the open disk $$\Delta' = \{ u \in T : \rho(u, c) < \delta^* \varepsilon / 2 \}$$ lies in Δ for ε small enough. It is easily seen that $||z^*|| < 1$ for any point $z^* \in T^*$, in particular $||c^*|| \le 1$. Since $$\varepsilon^{-1}c \to c^*, \qquad \varepsilon^{-1}\rho(y,c) \to ||c^*||,$$ therefore, for ε small enough, $\rho(y, c) < 2\varepsilon$ and the radius of Δ' is larger than $(\delta^*/4)\rho(y, c)$. This proves that S_n is porous at y. COROLLARY 1. On any convex surface $S \subset \mathbb{R}^3$ and for any point $x \in S$, most and almost all points are not conjugate to x. *Proof.* A porous set on S is by definition nowhere dense and by Lebesgue's density theorem of measure zero. THEOREM 2. On any convex surface $S \subset \mathbb{R}^d$ with a dense set of endpoints, for any point $x \in S$, the set of points conjugate to x is dense too. **Proof.** Let S be a convex surface with a dense set of endpoints, and $x \in S$. Suppose there is an open set $O \subseteq S$ no point of which is conjugate to x and let $z \in O$ be an endpoint other than x. Since every point $y \in O$ is joined by precisely one segment Σ_y with x, the mapping $y \mapsto \Sigma_y$ is continuous (see [2], p. 81). Let $a \in S \setminus \Sigma_z$. Because z is an extreme point of conv S, we can choose a convex cap (a (d-1)-cell on S cut off by a hyperplane) $Y \subset O$ containing z in its interior so small that $a \notin \Sigma_y$ for all $y \in Y$. If $\sigma(y, r)$ denotes the point of Σ_y at distance r from y then σ is continuous in both variables (see [2], (10.5), (10.5'), (11.3)). Thus the set $$\Omega = \bigcup_{y \in \mathrm{bd}\,Y} \Sigma_y$$ is contractible: take the homotopy $H: \Omega \times [0,1] \rightarrow \Omega$ defined by $$H(u, t) = \sigma^*(u, t\rho(x, u)),$$ where $\sigma^*(u, r)$ denotes the point of the unique segment joining x and u, at distance r from u (see, for example, [3], p. 362). On the other hand, Ω neither contains z, because z is an endpoint not belonging to $\{x\} \cup \text{bd } Y$, nor a, but Ω includes the topological (d-2)-sphere bd Y. Moreover, $z \in \text{int } Y$ and $a \notin Y$. Thus Ω is not contractible and this contradiction ends the proof. COROLLARY 2. On most convex surfaces $S \subseteq \mathbb{R}^d$, for any point $x \in S$, the set of points conjugate to x is dense. Proof. Combine Theorem 2 with Theorem 1 in [7]. Acknowledgement. Thanks are due to Prof. P. Gruber, the referee, who pointed out an error in the first version of the proof of Theorem 1. ## References - A. D. Aleksandrov. Die innere Geometrie der konvexen Flächen (Akademie-Verlag, Berlin, 1955). - 2. H. Busemann. Convex Surfaces (Interscience Publishers, New York, 1958). - 3. H. F. Cullen. Introduction to General Topology (D. C. Heath & Co, Boston, 1967). - 4. E. Dolženko. Boundary properties of arbitrary functions. *Izv. Akad. Nauk SSSR Ser. Mat.*, 31 (1967), 3-14. - 5. P. Gruber. Geodesics on typical convex surfaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. riz. Mat. Natur. (8). To appear. - 6. L. Zajíček. Porosity and σ-porosity. Real Analysis Exch., 13 (1987-88), 314-350. - T. Zamfirescu. Many endpoints and few interior points of geodesics. *Invent. Math.*, 69 (1982), 253-257. - T. Zamfirescu. Nearly all convex surfaces are smooth and strictly convex. Mh. Math., 103 (1987), 57-62. - 9. T. Zamfirescu. Porosity in convexity. Real Analysis Exch., 15 (1989-90), 424-436. - T. Zamfirescu. Baire categories in convexity. Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 279-304. Dr. T. Zamfirescu, Fachbereich Mathematik, Universität Dortmund, Postfach 50 05 00, D-4600 Dortmund 50, Germany. 52A15: CONVEX AND DISCRETE GEO-METRY; General convexity; Convex sets in 3 dimensions (including convex surfaces). Received on the 21st of November, 1989.