## CONJUGATE POINTS ON CONVEX SURFACES

## TUDOR ZAMFIRESCU

On a convex surface  $S \subset \mathbb{R}^d$ , two points x, y are *conjugate* if there are at least two shortest paths, called *segments*, from x to y. This paper is about the set of points conjugate to some fixed point  $x \in S$ .

First we make a few simple remarks in  $\mathbb{R}^3$ . On any convex surface S whose tangent cones have full angle larger than  $\pi$ , for example on any smooth convex surface, for every point  $x \in S$  each furthest point of S (in the inner metric) is conjugate to S. However, for such S, there may well be just one point conjugate to a given S is a lense (boundary of the intersection of two congruent balls), on the circle of all points of non-differentiability of S any two points are conjugate. However, if S is a segment on a convex surface S and S is close enough to an interior point of S, then the set of points of S conjugate to S is easily seen to be at most countable. This set is dense on S, if S is a typical convex surface in the sense of Baire categories, which follows from the existence on such a convex surface of a dense set of endpoints, i.e., points not interior to any geodesic (see Theorem 1 in [7]). The same is true for intrinsic circles around S instead of S (see the Corollary in [7]). These remarks can make the reader eager to know more about the set of all conjugate points of some given point or a convex surface.

When speaking about a property P shared by several elements of a Baire space, we say that *most* or *typical* elements in the space have P if those without P form a set of first Baire category. For results on typical convex bodies see the survey [10].

P. Gruber [5] showed that on most convex surfaces S, for any point  $x \in S$ , most points of S are not conjugate to x. Moreover, he proved that, for d = 3, on most convex surfaces S, for any point  $x \in S$ , the set of points conjugate to x is dense in S.

We shall show here that, for d = 3, the first result can be extended to all convex surfaces and complemented by the corresponding measure-theoretic statement. Concerning the second result, we shall establish it for an arbitrary dimension d, using a short proof which avoids any reference to the mutual position of segments on arbitrary convex surfaces (which is known only for d = 3, see Aleksandrov [1]).

To state our first theorem we need the notion of porosity. In a metric space  $(X, \rho)$ , a set M is called *porous at*  $y \in M$  if there is some  $\alpha > 0$  such that, for every  $\varepsilon > 0$ , there is a point z in the open ball  $B(y, \varepsilon)$  of centre y and radius  $\varepsilon$  such that

$$B(z, \alpha \rho(y, z)) \cap M = \emptyset.$$

A set in X is called *porous* if it is porous at all its points, and is called  $\sigma$ -porous if it is a countable union of porous sets [4]. We say that nearly no

elements of a Baire metric space have property P if those points enjoying P form a  $\sigma$ -porous set [8]. For results around porosity see the survey [6] and for applications to convexity see [9].

THEOREM 1. On any convex surface  $S \subseteq \mathbb{R}^3$  and for any point  $x \in S$ , nearly no points are conjugate to x.

To prove this theorem we need the following elementary lemma.

LEMMA. In  $\mathbb{R}^2$ , if  $a \neq \pm b$ , ||a|| = ||b|| and  $c = \frac{1}{2}a + b$ , then each point of the triangle  $\Theta$  with vertices b, 2b, c is closer to the line-segment B = [b, 2b] than to the line-segment A = [0, a].

Proof. We start with two easy remarks.

- (a) The line L through b/2 orthogonal to [0, b] separates  $\Theta$  from 0 since it separates the vertices of  $\Theta$  from 0: b and 2b obviously, and c because  $||b-c|| = ||a||/2 = ||b||/2 = ||b-\frac{1}{2}b||$ .
- (b) The angle-bisector of the angle a0b separates  $\Theta$  from a because it cuts [a, 2b] in a point c' such that  $||a-c'||/||2b-c'|| = ||a||/||2b|| = \frac{1}{2}$ .

To prove the lemma we have to consider three cases.

Case I.  $\langle a, c \rangle \leq 0$ . In this case, for any point  $x \in \Theta$ , by (a),

$$d(x, B) \le ||x - b|| \le ||x|| = d(x, A),$$

where d(x, X) denotes the distance from x to X, that is  $\inf\{\|x-y\|: y \in X\}$ . Case II.  $\langle a, c \rangle > 0$  and  $\langle a, b \rangle < 0$ . In this case let  $u \in [c, 2b]$  and  $v \in [b, c]$  be such that  $\langle b-u, b \rangle = \langle b-c, v \rangle = 0$ . Also let  $\Psi$  be the triangle of vertices b, c, u. For any point  $x \in \Psi$ ,

$$d(x, B) = ||x - b|| < ||c - b|| = ||b||/2 < ||b|| \cos \frac{\pi}{6} < ||b|| \cos \angle b \cdot 0v$$
$$= ||v|| \le d(x, [-a, a]) \le d(x, A)$$

and, for any point  $x \in \Theta \setminus \Psi$ , by (b),

$$d(x, B) < d(x, [-2a, a]) \le d(x, A)$$
.

Case III.  $(a, b) \ge 0$ . In this case, for any point  $x \in \Theta$ , by (b),

$$d(x, B) < d(x, [0, 2a]) \le d(x, A)$$
.

Proof of Theorem 1. Let  $\rho$  be the inner metric of S. Denote by S' the set of all points of S at which the full angle of the tangent cone is  $2\pi$ , i.e., the set of all non-conical points of S.

For any point  $y \in S$  different from x, let  $\alpha(y)$  be the maximal angle at x between two segments from x to y. Clearly  $0 \le \alpha(y) \le \pi$  for any y. Let

$$S_n = \{ y \in S' : 2^{-n} \pi < \alpha(y) \le 2^{-n+1} \pi \}.$$

Of course,

$$(S \setminus S') \cup \bigcup_{n=1}^{\infty} S_n \supset \{ y \in S : x \text{ and } y \text{ are conjugate} \}.$$

We shall prove that  $S_n$  is porous for arbitrary n, which will establish the theorem because  $S \setminus S'$  is countable.

Let  $y \in S_n$  and consider the segments  $\Sigma_1, \Sigma_2$  from x to y and the domain  $D \subset S$  with boundary  $\Sigma_1 \cup \Sigma_2$ , such that the angle at x between  $\Sigma_1$  and  $\Sigma_2$  towards D equals  $\alpha(y)$ . (See Fig. 1.) For  $\varepsilon < \rho(x, y)$  small enough, the intrinsic circle J of all points in S at distance  $\varepsilon/2$  from y is a Jordan curve (see [1], p. 383). It obviously intersects  $\Sigma_i$  in precisely one point  $\sigma_i$  (i=1,2), and  $J_0 = J \cap \overline{D}$  is a Jordan arc with endpoints  $\sigma_1, \sigma_2$ .

The continuity of  $\rho$  implies the existence of a point  $j \in J_0$  with  $\rho(j, \sigma_1) = \rho(j, \sigma_2)$ . Let  $\Sigma_i'$  be a segment from j to  $\sigma_i$  (i = 1, 2) and  $\Sigma$  a segment from j to x. One of the two angles that  $\Sigma$  makes with  $\Sigma_1$  and  $\Sigma_2$  at x is at most  $\alpha(y)/2$ . Suppose for example that  $\Sigma$  and  $\Sigma_1$  determine that angle. Let  $\sigma_1' \in \Sigma_1$  satisfy  $\rho(y, \sigma_1') = \varepsilon$ . Consider a segment  $\Sigma_1''$  from j to  $\sigma_1'$  and a segment  $\Sigma''$  from  $\sigma_1$  to the midpoint  $\sigma_3$  of  $\Sigma_1''$ . Consider also the segment  $\Sigma' \subset \Sigma_1$  from  $\sigma_1$  to  $\sigma_1'$ , the segment  $\Sigma'' \subset \Sigma_1''$  from  $\sigma_3$  to  $\sigma_1'$  and the segment  $\Sigma_1' \subset \Sigma_1$  from  $\sigma_1$  to x. As we shall see later, for  $\varepsilon$  small enough, for any point z in the interior of the triangle  $\Sigma' \cup \Sigma'' \cup \Sigma'''$  and for any segment  $\Sigma_z$  from z to x,  $\Sigma_z \setminus \{x\}$  lies in the interior T of the triangle  $\Sigma \cup \Sigma_1' \cup \Sigma_1^-$ , whence  $\alpha(z) < \alpha(y)/2$ . This will prove  $T \cap S_n = \emptyset$ . Subsequently we shall find a disk in T which is large enough to ensure the porosity of  $S_n$  at y. The fact that the metric of S is, locally at y, the planar metric of the tangent cone at y is essentially the only tool we use in the rest of the proof.

Choose the origin of  $\mathbb{R}^3$  at y. For simplicity, we shall suppose S to be smooth at y. However, the proof is essentially the same if S is not smooth at y, because then its tangent cone is the union of two halfplanes. Let  $\Pi$  be the supporting plane of conv S at y and denote by p the projection from  $\mathbb{R}^3$  onto  $\Pi$ 

By Theorem (11.4) in its form (11.6) from [2], for any  $\gamma > 0$  there is some  $\beta > 0$  such that, for  $v, w \in S$ ,

$$|\rho(v, w) - ||p(v) - p(w)|| \le \gamma \max \{\rho(v, y), \rho(w, y)\},$$

if  $\max \{\rho(v, y), \rho(w, y)\} < \beta$ . It follows that, for  $\varepsilon = \beta/3$ ,

$$\frac{\left|\rho(v,w) - \|p(v) - p(w)\|\right|}{\varepsilon} \le 3\gamma, \tag{*}$$

for any  $v, w \in S$  at distance at most  $3\varepsilon$  from y. Remark that all points  $j, \sigma_1, \sigma'_1, \sigma_2, \sigma_3$  have distance at most  $3\varepsilon$  from y.

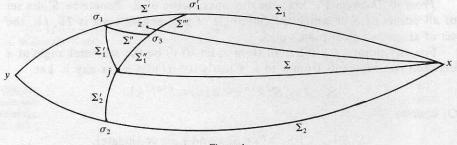


Figure 1

Let  $\sigma_1^*$ ,  $\sigma_1'^*$  be the points on the halfline  $L_1 \subset \Pi$  tangent to  $\Sigma_1$  at y, with  $2\|\sigma_1^*\| = \|\sigma_1'^*\| = 1$ . Let  $j^*$  be the point on the halfline in  $\Pi$  besecting the angle towards D between the tangents to  $\Sigma_1$  and  $\Sigma_2$  at y, with  $\|j^*\| = \frac{1}{2}$ . Put  $\sigma_3^* = \frac{1}{2}(j^* + \sigma_1'^*)$ .

Further, let  $\Delta^*$  be the largest open disk of  $\Pi$  included in the open triangle  $T^*$  of vertices  $\sigma_1^*$ ,  $\sigma_3^*$ ,  $\sigma_1'^*$ . Denote by  $\Sigma_i^+ \subset \Sigma_i$  the segment from y to  $\sigma_i$  on S, by  $\Sigma_1'^+ \subset \Sigma_1$  the segment from y to  $\sigma_1'$  on S, by  $\Sigma_i^{+*}$  and  $\Sigma_1'^{+*}$  the corresponding line-segments from y to  $\sigma_i^*$  and  $\sigma_1'^*$  respectively (i=1,2), and by  $\Sigma'^*$  the line-segment from  $\sigma_1^*$  to  $\sigma_1'^*$ .

Suppose  $\varepsilon \to 0+$ . Let  $\lambda A$  denote the length of A. From [2], Corollary (11.8), it follows that  $\lambda \Sigma_1^+/\|\sigma_1\| \to 1$ , whence  $\varepsilon^{-1}\|\sigma_1\| \to \frac{1}{2}$ . This, together with the fact that the halfline starting at y and passing through  $\sigma_1$  tends to  $L_1$ , implies  $\varepsilon^{-1}\sigma_1 \to \sigma_1^*$ . Since  $\lambda(\varepsilon^{-1}\Sigma_1^+) = \frac{1}{2}$ ,  $\varepsilon^{-1}\Sigma_1^+ \to \Sigma_1^{+*}$  too. Analogously  $\varepsilon^{-1}\sigma_2 \to \sigma_2^*$ ,  $\varepsilon^{-1}\sigma_1' \to \sigma_1'^*$ ,  $\varepsilon^{-1}\Sigma_2^+ \to \Sigma_2^{+*}$  and  $\varepsilon^{-1}\Sigma_1' \to \Sigma_1'^{+*}$ , whence  $\varepsilon^{-1}\Sigma_1' \to \Sigma_1'^{**}$ . Let  $\rho'$  be the inner metric of  $\varepsilon^{-1}S$ .  $\rho(j,\sigma_1) = \rho(j,\sigma_2)$  implies

$$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_1) = \rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_2).$$

By (\*),

$$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_1) - \|p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_1)\| \to 0$$

and

$$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_2) - \|p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_2)\| \to 0.$$

Hence

$$||p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_1)|| - ||p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma_2)|| \to 0.$$

This, together with  $p(\varepsilon^{-1}\sigma_i) \to \sigma_i^*$  and  $\varepsilon^{-1} \|\sigma_i - p(\sigma_i)\| \to 0$  (i = 1, 2), implies

$$\|p(\varepsilon^{-1}j) - \sigma_1^*\| - \|p(\varepsilon^{-1}j) - \sigma_2^*\| \to 0.$$
 (\*\*)

Moreover

$$\rho'(y, \varepsilon^{-1}j) - \|p(\varepsilon^{-1}j)\| \to 0.$$

This, together with  $\rho'(y, \varepsilon^{-1}j) = \varepsilon^{-1}\rho(y, j) = 1$ , implies

$$||p(\varepsilon^{-1}j)|| \to 1,$$

which, together with (\*\*), proves  $p(\varepsilon^{-1}j) \rightarrow j^*$ . Since

$$\varepsilon^{-1} || j - p(j) || \to 0, \ \varepsilon^{-1} j \to j^*$$

too. From (\*) it follows

$$\rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma'_1) - \|p(\varepsilon^{-1}j) - p(\varepsilon^{-1}\sigma'_1)\| \to 0,$$

which, together with  $\varepsilon^{-1}j \rightarrow j^*$ ,  $p(\varepsilon^{-1}j) \rightarrow j^*$ ,  $\varepsilon^{-1}\sigma_1' \rightarrow \sigma_1'^*$  and  $p(\varepsilon^{-1}\sigma_1') \rightarrow \sigma_1'^*$  implies

$$\lambda(\varepsilon^{-1}\Sigma_1'') = \rho'(\varepsilon^{-1}j, \varepsilon^{-1}\sigma_1') \to ||j^* - \sigma_1'^*||.$$

This and the fact that  $\varepsilon^{-1}\Sigma_1''$  joins  $\varepsilon^{-1}j$  to  $\varepsilon^{-1}\sigma_1'$  imply that  $\varepsilon^{-1}\Sigma_1'$  converges to the line-segment in  $\Pi$  joining  $j^*$  to  $\sigma_1'^*$ . Analogously,  $\varepsilon^{-1}\Sigma_i'$  and  $\varepsilon^{-1}\Sigma_i''$  converge to the three sides of the triangle  $T^*$ . Also, if  $\Sigma_i$  is a segment

from y to j, then  $\Sigma_j$  clearly converges to the line-segment  $[y, j^*]$ . Suppose now that  $\Sigma_z \setminus \{x\}$  meets  $\Sigma \cup \Sigma_1' \cup \Sigma_1^-$  for small  $\varepsilon > 0$ . Then it must meet  $\Sigma_1'$  and, also,  $\Sigma_j$ . Suppose  $\rho(z, s) > \rho(z, t)$ , where  $s \in \Sigma_z \cap \Sigma_j$  and t is a point of  $\Sigma'$  closest to z. Then, for  $\varepsilon$  small enough,

$$\rho(z, x) = \rho(z, s) + \rho(s, x) \ge \rho(z, s) + \rho(y, x) - \rho(y, s)$$
$$> \rho(z, t) + \rho(y, x) - \frac{\varepsilon}{2} = \rho(z, t) + \rho(\sigma_1, x) \ge \rho(z, t) + \rho(t, x),$$

which is impossible. Hence  $\rho(z,s) \leq \rho(z,t)$ . This implies, by taking the limit as  $\varepsilon \to 0$ , that, for some point  $z^* \in \bar{T}^*$ , its distance to the line-segment  $[y,j^*]$  is not larger than its distance to the line-segment  $[\sigma_1^*,\sigma_1'^*]$ . This contradicts the lemma. Thus, indeed,  $T \cap S_n = \emptyset$  for  $\varepsilon$  small enough.

Let  $c^*$  and  $\delta^*$  be the centre and the radius of  $\Delta^*$ . Let c be the point of T with  $p(c) = \varepsilon c^*$  and put

$$\Delta = \{ u \in T \colon \varepsilon^{-1} p(u) \in \Delta^* \}.$$

For any point  $u \in bd \Delta$ ,

$$\varepsilon^{-1}\rho(u,c) - \varepsilon^{-1} \|p(u) - p(c)\| \to 0$$

*u*-uniformly. Since  $\varepsilon^{-1} \| p(u) - p(c) \| = \| \varepsilon^{-1} p(u) - c^* \| = \delta^*$ , it follows that  $\varepsilon^{-1} \rho(u, c) \to \delta^*$ 

*u*-uniformly. This in turn, together with  $\varepsilon^{-1}c \to c^*$ , implies  $\varepsilon^{-1}\bar{\Delta} \to \bar{\Delta}^*$  with respect to the Hausdorff metric. Then the open disk

$$\Delta' = \{ u \in T : \rho(u, c) < \delta^* \varepsilon / 2 \}$$

lies in  $\Delta$  for  $\varepsilon$  small enough. It is easily seen that  $||z^*|| < 1$  for any point  $z^* \in T^*$ , in particular  $||c^*|| \le 1$ . Since

$$\varepsilon^{-1}c \to c^*, \qquad \varepsilon^{-1}\rho(y,c) \to ||c^*||,$$

therefore, for  $\varepsilon$  small enough,  $\rho(y, c) < 2\varepsilon$  and the radius of  $\Delta'$  is larger than  $(\delta^*/4)\rho(y, c)$ . This proves that  $S_n$  is porous at y.

COROLLARY 1. On any convex surface  $S \subset \mathbb{R}^3$  and for any point  $x \in S$ , most and almost all points are not conjugate to x.

*Proof.* A porous set on S is by definition nowhere dense and by Lebesgue's density theorem of measure zero.

THEOREM 2. On any convex surface  $S \subset \mathbb{R}^d$  with a dense set of endpoints, for any point  $x \in S$ , the set of points conjugate to x is dense too.

**Proof.** Let S be a convex surface with a dense set of endpoints, and  $x \in S$ . Suppose there is an open set  $O \subseteq S$  no point of which is conjugate to x and let  $z \in O$  be an endpoint other than x. Since every point  $y \in O$  is joined by precisely one segment  $\Sigma_y$  with x, the mapping  $y \mapsto \Sigma_y$  is continuous (see [2], p. 81). Let  $a \in S \setminus \Sigma_z$ . Because z is an extreme point of conv S, we can choose

a convex cap (a (d-1)-cell on S cut off by a hyperplane)  $Y \subset O$  containing z in its interior so small that  $a \notin \Sigma_y$  for all  $y \in Y$ . If  $\sigma(y, r)$  denotes the point of  $\Sigma_y$  at distance r from y then  $\sigma$  is continuous in both variables (see [2], (10.5), (10.5'), (11.3)). Thus the set

$$\Omega = \bigcup_{y \in \mathrm{bd}\,Y} \Sigma_y$$

is contractible: take the homotopy  $H: \Omega \times [0,1] \rightarrow \Omega$  defined by

$$H(u, t) = \sigma^*(u, t\rho(x, u)),$$

where  $\sigma^*(u, r)$  denotes the point of the unique segment joining x and u, at distance r from u (see, for example, [3], p. 362).

On the other hand,  $\Omega$  neither contains z, because z is an endpoint not belonging to  $\{x\} \cup \text{bd } Y$ , nor a, but  $\Omega$  includes the topological (d-2)-sphere bd Y. Moreover,  $z \in \text{int } Y$  and  $a \notin Y$ . Thus  $\Omega$  is not contractible and this contradiction ends the proof.

COROLLARY 2. On most convex surfaces  $S \subseteq \mathbb{R}^d$ , for any point  $x \in S$ , the set of points conjugate to x is dense.

Proof. Combine Theorem 2 with Theorem 1 in [7].

Acknowledgement. Thanks are due to Prof. P. Gruber, the referee, who pointed out an error in the first version of the proof of Theorem 1.

## References

- A. D. Aleksandrov. Die innere Geometrie der konvexen Flächen (Akademie-Verlag, Berlin, 1955).
- 2. H. Busemann. Convex Surfaces (Interscience Publishers, New York, 1958).
- 3. H. F. Cullen. Introduction to General Topology (D. C. Heath & Co, Boston, 1967).
- 4. E. Dolženko. Boundary properties of arbitrary functions. *Izv. Akad. Nauk SSSR Ser. Mat.*, 31 (1967), 3-14.
- 5. P. Gruber. Geodesics on typical convex surfaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. riz. Mat. Natur. (8). To appear.
- 6. L. Zajíček. Porosity and σ-porosity. Real Analysis Exch., 13 (1987-88), 314-350.
- T. Zamfirescu. Many endpoints and few interior points of geodesics. *Invent. Math.*, 69 (1982), 253-257.
- T. Zamfirescu. Nearly all convex surfaces are smooth and strictly convex. Mh. Math., 103 (1987), 57-62.
- 9. T. Zamfirescu. Porosity in convexity. Real Analysis Exch., 15 (1989-90), 424-436.
- T. Zamfirescu. Baire categories in convexity. Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 279-304.

Dr. T. Zamfirescu, Fachbereich Mathematik, Universität Dortmund, Postfach 50 05 00, D-4600 Dortmund 50, Germany. 52A15: CONVEX AND DISCRETE GEO-METRY; General convexity; Convex sets in 3 dimensions (including convex surfaces).

Received on the 21st of November, 1989.