CONJUGATE POINTS ON CONVEX SURFACES
TUDOR ZAMFIRESCU

On a convex surface S<R? two points x, y are conjugate if there are at
least two shortest paths, called segments, from x to y. This paper is about the
set of points conjugate to some fixed point x e S.

First we make a few simple remarks in R>. On any convex surface S whose
tangent cones have full angle larger than m, for example on any smooth convex
surface, for every point x € S each furthest point of S (in the inner metric) is
conjugate to x. However, for such S, there may well be just one point conjugate
to a given x€ S. If S is a lense (boundary of the intersection of two congruent
balls), on the circle of all points of non-differentiability of S any two points
are conjugate. However, if T is a segment on a convex surface S and x € S\,
is close enough to an interior point of X, then the set of points of I conjugate
to x is easily seen to be at most countable. This set is dense on =, if S is a
typical convex surface in the sense of Baire categories, which follows from
the existence on such a convex surface of a dense set of endpoints, i.e., points
not interior to any geodesic (see Theorem 1 in [7]). The same is true for
intrinsic circles around x instead of X (see the Corollary in [7]). These remarks
can make the reader eager to know more about the set of all conjugate points
of some given point or a convex surface.

When speaking about a property P shared by several elements of a Baire
space, we say that most or typical elements in the space have P if those without
P form a set of first Baire category. For results on typical convex bodies see
the survey [10].

P. Gruber [5] showed that on most convex surfaces S, for any point x€ S,
most points of S are not conjugate to x. Moreover, he proved that, for d = 3,
on most convex surfaces S, for any point x € S, the set of points conjugate to
x is dense in S.

We shall show here that, for d =3, the first result can be extended to all
convex surfaces and complemented by the corresponding measure-theoretic
statement. Concerning the second result, we shall establish it for an arbitrary
dimension d, using a short proof which avoids any reference to the mutual
position of segments on arbitrary convex surfaces (which is known only for
d =3, see Aleksandrov [1]).

To state our first theorem we need the notion of porosity. In a metric space
(X, p), a set M is called porous at y e M if there is some a >0 such that, for
every £ >0, there is a point z in the open ball B(y, ) of centre y and radius
€ such that

B(z, ap(y,2))n M =0.

A set in X is called porous if it is porous at all its points, and is called
a-porous if it is a countable union of porous sets [4]. We say that nearly no
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elements of a Baire metric space have property P if those points enjoying P
form a o-porous set [8]. For results around porosity see the survey [6] and
for applications to convexity see [9].

THEOREM 1. On any convex surface S < R® and for any point x € S, nearly
no points are conjugate to x.

To prove this theorem we need the following elementary lemma.

LemMA. In R? ifa# b, |a||=|/b| and ¢ =3a+ b, then each point of the
triangle © with vertices b, 2b, c is closer to the line-segment B=[b, 2b] than to
the line-segment A =0, a].

Proof. We start with two easy remarks.

(a) The line L through b/2 orthogonal to [0, b] separates ® from 0 since
it separates the vertices of ® from 0: b and 2b obviously, and ¢ because
Ib—cl=llall/2=|bll/2=b—23b].

(b) The angle-bisector of the angle a0b separates ® from a because it cuts
[a,2b] in a point ¢’ such that |a—c'||/||2b—c'|| =] a|/]|2b] =3.

To prove the lemma we have to consider three cases.

Case I. (a,c)=<0. In this case, for any point x € ®, by (a),

d(x, B)<||x—b| < |x| = d(x, A),

where d(x, X) denotes the distance from x to X, that is inf {[|x—y|: y € X}.

Case II. {(a,c)>0 and {a, b)<0. In this case let ue[c, 2b] and ve[b, c]
be such that (b—u, b)y=(b—c,v)=0. Also let ¥ be the triangle of vertices
b, ¢, u. For any point xe ¥,

d(x, B)=||x—b| <|c—b| =|b]/2<|b] cos§<||b” cos %b0v

=|vl<d(x,[-a,a]) <d(x, A)
and, for any point x € @\, by (b),
d(x,B)<d(x,[2a,a])<d(x, A).
Case III. {a,b)=0. In this case, for any point x € @, by (b),
d(x, B)<d(x,[0,2a])<d(x, A).
Proof of Theorem 1. Let p be the inner metric of S. Denote by S’ the set

of all points of S at which the full angle of the tangent cone is 2, i.e., the

set of all non-conical points of S.
For any point y € S different from x, let a(y) be the maximal angle at x
between two segments from x to y. Clearly 0<a(y)< for any y. Let

S ={ye S "mr<a(y)=2"""7n}
Of course,

(S\S)u U S,>{yeS: x and y are conjugate}. &

n=1
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We shall prove that S, is porous for arbitrary n, which will establish the
theorem because S\ S’ is countable.

Let y€ S, and consider the segments =,, 2, from x to y and the domain
Dc S with boundary 2, UZX,, such that the angle at x between 2, and X,
towards D equals a(y). (See Fig. 1.) For & < p(x, y) small enough, the intrinsic
circle J of all points in S at distance £/2 from y is a Jordan curve (see [1],
p.383). It obviously intersects X; in precisely one point o; (i=1,2), and
Jo=J n D is a Jordan arc with endpoints o, 0.

The continuity of p implies the existence of a point jeJ, with
p(j, 01) =p(j, 05). Let 2} be a segment from j to o; (i=1,2) and X a segment
from j to x. One of the two angles that = makes with 3, and X, at x is at
most a(y)/2. Suppose for example-that = and 2, determine that angle. Let
o' €3, satisfy p(y, o}) = &. Consider a segment 2{ from j to o and a segment
S from o, to the midpoint o5 of 2{. Consider also the segment £'< X, from
o, to o}, the segment £” <=/ from o3 to o] and the segment 2, c X, from
o, to x. As we shall see later, for e small enough, for any point z in the
interior of the triangle ' U X" U X" and for any segment X, from z to x, > \{x}
lies in the interior T of the triangle S U U 27, whence a(z) <a(y)/2. This
will prove T S, =@. Subsequently we shall find a disk in T which is large
enough to ensure the porosity of S, at y. The fact that the metric of S is,
locally at y, the planar metric of the tangent cone at y is essentially the only
tool we use in the rest of the proof.

Choose the origin of R® at y. For simplicity, we shall suppose S to be
smooth at y. However, the proof is essentially the same if S is not smooth at
y, because then its tangent cone is the union of two halfplanes. Let II be the
supporting plane of conv S at y and denote by p the projection from R? onto
II.

By Theorem (11.4) in its form (11.6) from [2], for any v >0 there is some
B >0 such that, for v, we S,

lo(v, w)— | p(v) — p(w)]|| < y max {p(v, y), (W, »)},
if max {p(v, y), p(w, y)} <pB. It follows that, for e =p/3,
lo(v, w) = | p(v) —p(W)l|

€

=<3y, (*)

for any v, we S at distance at most 3¢ from jy. Remark that all points
j, o1, o}, 05, 03 have distance at most 3¢ from y.

>3 e 54

le

o3 2,

Figure 1
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Let o, o}* be the points on the halfline L, <II tangent to X, at y, with
2|lef|| = |loi*|| = 1. Let j* be the point on the halfline in IT besecting the angle
towards D between the tangents to 2, and =, at y, with |j*|=3. Put
o =3(j*+ o).

Further, let A* be the largest open disk of II included in the open triangle
T* of vertices o¥, 0¥, o}*. Denote by 27 =3, the segment from y to o; on
S,by2;" < 3, the segment from y to o'f on S, by 2 * and =|"* the corresponding
line-segments from y to of and o* respectively (i=1,2), and by '* the
line-segment from of to oi*.

Suppose £->0+. Let AA denote the length of A. From [2], Corollary
(11.8), it follows that A2} /| o] > 1, whence £ '| o] >3. This, together with
the fact that the halfline starting at y and passing through o, tends to L,,
implies ¢ 'o,>o¥. Since A(e '2})=3, £ 'S7>3]* too. Analogously
e lassok, e ol o*, 713 53 and £ 1T > 3 whence g 253
Let p’ be the inner metric of ¢'S. p(j, oy) = p(J, 0,) implies

pler hettoi)=pleTje o).

By (%),

p'(e7Y, e lo)—|lp(e'j)—p(e o)) >0
and

p'(e7'j, e 'an) = p(e ') —p(e )| > 0.
Hence

Ip(e™'j) = p(e~ o) = | p(e~j) —p(e " 0a) | > 0.
This, together with p(¢ '0;) > oF and e '||o; —p(0,)|| >0 (i =1, 2), implies
lp(e™'j)— ¥l —-llp(e~"j)—of]|>0. ()
Moreover
p'(y e )= llp(e )]0
This, together with p'(y, e 'j) =& 'p(y,j) =1, implies
Ip(e ' NI>1,
which, together with (%), proves p(e~'j)—>j*. Since
e li—pNI~>0, e j>j*
too. From (*) it follows
p'(e7j, e o)~ |l p(e ' j)—p(e'o})| >0,
which, together with & 'j—=j*, p(e 'j)=>j*, e 'oj>o* and p(e ‘o)) > oi*
implies
A(EeT'EN) =p'(e7 Y, e o)) > [l jF - ot
This and the fact that £ 'S/ joins ¢ 'j to ¢ 'o} imply that ¢ 'Z{ converges

to the line-segment in II joining j* to o}*. Analogously, ¢ '3/, ¢ '2” and
e 'S" converge to the three sides of the triangle T*. Also, if ; is a segment
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from y to j, then 2, clearly converges to the line-segment [, j*]. Suppose now
that 2,\{x} meets U] U X7 for small £ >0. Then it must meet 3/ and, also,
S,. Suppose p(z,s)>p(z, t), where s€Z.NZ,; and ¢ is a point of 2’ closest
_to z. Then, for ¢ small enough, '

p(z,x)=p(z,8)+p(s,x)=p(z,5)+p(y,x)—p(), 5)
> p(z, 1) +p(, x)—§= o(z, 1)+ ploy, x) = p(z, 1) +p(1, ),

which is impossible. Hence p(z, s)=<p(z, t). This implies, by taking the limit
as £ -0, that, for some point z*e T*, its distance to the line-segment [y, %]
is not larger than its distance to the line-segment [o¥, o*]. This contradicts
the lemma. Thus, indeed, TN S, =@ for € small enough.

Let c* and 8* be the centre and the radius of A*. Let c be the point of T
with p(c) = ec* and put

A={ueT: e 'p(u)ecA*}.
For any point u€bd A,
e 'p(u, )=~ p(u) —p(c)]| >0
u-uniformly. Since £'| p(u)—p(c)|| = e 'p(u)—c*||= &%, it follows that
e 'p(u,c)>8*

u-uniformly. This in turn, together with & 'c~c¥, implies £'A—>A* with
respect to the Hausdorff metric. Then the open disk

AN ={ueT:plu c)<db*e/2}
lies in A for e small enough. It is easily seen that [|z*|| <1 for any point
z*e T*, in particular | c*|| <1. Since
elem et e plioElicE),

therefore, for & small enough, p(y, ¢) <2e and the radius of A’ is larger than
(6*/4)p(y, ¢). This proves that S, is porous at y.

COROLLARY 1.  On any convex surface S <R’ and for any point x € S, most
and almost all points are not conjugate to x.

Proof. A porous set on S is by definition nowhere dense and by Lebesgue’s
density theorem of measure zero.

THEOREM 2. On any convex surface S < R with a dense set of endpoints,
for any point x € S, the set of points conjugate to x is dense too.

Proof. Let S be a convex surface with a dense set of endpoints, and x€ S.
Suppose there is an open set O < S no point of which is conjugate to x and
let ze O be an endpoint other than x. Since every point y € O is joined by
precisely one segment =, with x, the mapping y - 3, is continuous (see [2],
p. 81). Let ae S\X,. Because z is an extreme point of conv S, we can choose
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a convex cap (a (d —1)-cell on S cut off by a hyperplane) Y = O containing
z in its interior so small that ag2, for all ye Y. If o(y, r) denotes the point
of X, at distance r from y then o is continuous in both variables (see [2],
(10.5), (10.5%), (11.3)). Thus the set

o= U 3,

yebdY
is contractible: take the homotopy H : {1 X[0, 1] Q defined by
H(u, t) =a*(u, tp(x, u)),

where o*(u, r) denotes the point of the unique segment joining x and u, at
distance r from u (see, for example, [3], p. 362).

On the other hand, Q) neither contains z, because z is an endpoint not
belonging to {x} Ubd Y, nor g, but Q includes the topological (d —2)-sphere
bd Y. Moreover, zeint Y and a¢ Y. Thus  is not contractible and this
contradiction ends the proof.

COROLLARY 2. On most convex surfaces S < R“, for any point x € S, the set
of points conjugate to x is dense.

Proof. Combine Theorem 2 with Theorem 1 in [7].

Acknowledgement. Thanks are due to Prof. P. Gruber, the referee, who
pointed out an error in the first version of the proof of Theorem 1.
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