PIER MARIO GANDINI - TUDOR ZAMFIRESCU

THE LEVEL SET STRUCTURE OF NEARLY ALL REAL CONTINUOUS FUNCTIONS

Estratto

V CONVEGNO INTERNAZIONALE DI TOPOLOGIA IN ITALIA LECCE-OTRANTO, 17-21 SETTEMBRE 1992

Supplemento ai Rendiconti del Circolo Matematico di Palermo

Serie II - numero 29 - anno 1992

Via Archirafi, 34 - 90123 Palermo (Italia)

THE LEVEL SET STRUCTURE OF NEARLY ALL REAL CONTINUOUS FUNCTIONS

PIER MARIO GANDINI

TUDOR ZAMFIRESCU

Nella presente nota si vede come la nozione di porosità permetta di migliorare alcuni risultati riguardanti proprietà tipiche degli insiemi di livello di una funzione continua di I=[0,1] in \mathbb{R} .

Introduction

- Let X be a Baire space. A subset of X is
- nowhere dense if and only if its closure has empty interior,
- a set of first category or meager if it is a countable union of nowhere dense subsets,
- a set of second category if it is not a set of first category.

Since in such a space the complement of a set of first category is of second category, we can say that most elements of X have a certain property

if the set of those elements which do not enjoy that property is meager. Such a property is also called *typical* in X. Many results on typical properties have been found in Geometry and Analysis (see e.g. the surveys [4] and [8] and chapter XIII of Bruckner's book [1]).

The notion of a porous set on the real line was introduced by Dolženko ([2]) in 1967 and generalized by Zajíček ([5]) in 1976 to a general metric space. Here we use a slightly stronger notion of porosity ([7]).

DEFINITIONS. A set M in a metric space (X, d) is called *porous* if there is a positive real number α such that for each $x \in X$ and for each positive ε there exists a point y in the open ball $B(x, \varepsilon)$ with center x and radius ε such that

$$B(y, \alpha d(x, y)) \cap M = \emptyset$$
.

If the above number α can be chosen as close to 1 as we wish then M is called *strongly porous*.

A countable union of porous sets is said to be σ -porous.

Clearly, any porous (σ -porous) set is nowhere dense (of first category). Many examples of nowhere dense but not porous sets can be found on the real line. More generally, it has been proved that σ -porosity is strictly more restrictive than first category in each Banach space ([6], page 322).

Let now C(I) be the space of all continuous functions f from I = [0, 1] into R with the standard metric:

$$d(f,g) = \max_{x \in I} |f(x) - g(x)|.$$

We shall say (see [7]) that *nearly all* elements of C(I) have a certain property if the set of those elements not enjoying it is σ -porous.

In [3] several classical results involving typical properties of elements in $\mathcal{C}(I)$ have been improved by showing that nearly all elements of $\mathcal{C}(I)$ have those properties. Here we study the level set structure for nearly all elements of $\mathcal{C}(I)$.

1. A result on the level sets

Let m_f and M_f be the minimum and the maximum of an element f of C(I). The following result is known ([1], page 216).

THEOREM A. Let \mathcal{N} be the set of functions f of $\mathcal{C}(I)$ to each of which corresponds a dense denumerable subset S_f of the interval (m_f, M_f) such that the level set E_{β} is:

- (i) a nowhere dense perfect set when $\beta \notin S_f \cup \{m_f, M_f\}$,
- (ii) a single point when $\beta \in \{m_f, M_f\}$,
- (iii) of the form $P_{\beta} \cup \{x_{\beta}\}$ where P_{β} is a nonempty nowhere dense perfect set and x_{β} is isolated in E_{β} when $\beta \in S_f$.

Then most elements of C(I) are in \mathcal{N} .

In this section we improve Theorem A by showing that nearly all elements of C(I) are in \mathcal{N} . In order to do this we need the following lemmas.

LEMMA 1. For nearly all elements $f \in C(I)$, no level set contains more than one point at which f achieves a relative extremum.

Proof. For two disjoint closed intervals J_1 and J_2 of [0,1] with rational endpoints let

$$A_{J_1,J_2} = \{ f \in \mathcal{C}(I) : \sup_{x \in J_1} f(x) \neq \sup_{x \in J_2} f(x) \}$$

We show that $C(I) \setminus A_{J_1,J_2}$ is porous.

For an arbitrary element f of C(I) we put $y_1 = \sup_{x \in J_1 \cup J_2} f(x)$ and choose $x_1 \in J_1 \cup J_2$ such that $f(x_1) = y_1$. Suppose without loss of generality that $x_1 \in J_1$. Let $\varepsilon > 0$. Consider $\delta > 0$ such that

$$[x_1-\delta,x_1+\delta]\cap J_2=\emptyset$$

and

$$f(x_1) - \varepsilon/2 < f(x) \le f(x_1) \text{ for } x \in [x_1 - \delta, x_1 + \delta].$$

We can define a continuous function g satisfying:

- (i) g(x) = f(x) for $x \notin [x_1 \delta, x_1 + \delta]$,
- (ii) $g(x_1) = f(x_1) + \varepsilon/2$,
- (iii) g is linear in $[x_1 \delta, x_1]$ if $x_1 \delta \in I$ and constant in $[x_1 \delta, x_1] \cap I$ otherwise,
- (iv) g is linear in $[x_1, x_1 + \delta]$ if $x_1 + \delta \in I$ and constant in $[x_1, x_1 + \delta] \cap I$ otherwise.

For $x_1 - \delta \le x \le x_1 + \delta$ we have $f(x_1) - \varepsilon/2 \le g(x) \le f(x_1) + \varepsilon/2$ and therefore

$$|g(x)-f(x)|<\varepsilon.$$

It follows that

$$(*) d(f,g) < \varepsilon$$

We show now that $B(g, \varepsilon/4) \subset A_{J_1,J_2}$.

Take $h \in B(g, \varepsilon/4)$. Then $\sup_{x \in J_2} h(x) < y_1 + \varepsilon/4$ and

$$h(x_1) > g(x_1) - \varepsilon/4 = y_1 + \varepsilon/4$$
.

It follows that

$$\sup_{x \in J_1} h(x) \ge h(x_1) > y_1 + \varepsilon/4 > \sup_{x \in J_2} h(x) ,$$

whence $h \in A_{J_1,J_2}$.

This and (*) imply $B(g, \frac{1}{4}d(f, g)) \subseteq A_{J_1, J_2}$. Thus $C(I) \setminus A_{J_1, J_2}$ is porous. Analogously, the complements of

$$A'_{J_1,J_2} = \big\{ f \in \mathcal{C}(I) : \inf_{x \in J_1} f(x) \neq \inf_{x \in J_2} f(x) \big\}$$

and

$$A_{J_1,J_2}'' = \{ f \in \mathcal{C}(I) : \inf_{x \in J_1} f(x) \neq \sup_{x \in J_2} f(x) \}$$

are porous too. (In the proof of the porosity of $\mathcal{C}(I)\backslash A''_{J_1,J_2}$, if $f\in\mathcal{C}(I)$ is such that $\gamma_f=\inf_{x\in J_1}f(x)-\sup_{x\in J_2}f(x)>0$, ε should be chosen smaller than γ_f .) Hence $\mathcal{C}(I)\backslash \cap_{J_1,J_2}(A_{J_1,J_2}\cap A''_{J_1,J_2}\cap A''_{J_1,J_2})$ is σ -porous, and this is precisely the set of all functions f some level set of which contains at least two relative extrema of f.

LEMMA 2. ([3], Theorem 1.) Nearly all elements of $\mathcal{C}(I)$ are of non-monotonic type.

Let $\mathcal A$ and $\mathcal B$ be the sets of nearly all elements in Lemmas 1 and 2 respectively and $\mathcal N$ the residual set from Theorem A. Since $\mathcal A \cap \mathcal B \subset \mathcal N$ (see [1], page 216) we immediately get the following result.

THEOREM 1. Let \mathcal{N} be the set of functions f of $\mathcal{C}(I)$ to each of which corresponds a dense denumerable subset S_f of the interval (m_f, M_f) such that the level set E_{β} is:

- (i) a nowhere dense perfect set when $\beta \notin S_f \cup \{m_f, M_f\}$,
- (ii) a single point when $\beta \in \{m_f, M_f\}$,
- (iii) of the form $P_{\beta} \cup \{x_{\beta}\}$ where P_{β} is a nonempty nowhere dense perfect set and x_{β} is isolated in E_{β} when $\beta \in S_f$.

Then nearly all elements of C(I) are in \mathcal{N} .

2. A result on the zero-sets

If instead of all level sets we restrict ourselves to only one, say the zero-set Z(f) of an element f of C(I), we have the following result.

THEOREM 2. For nearly all $f \in C(I)$, Z(f) is strongly porous.

Proof. Let $\xi \in (0, 1)$ and put

$$C_m = \{ f \in \mathcal{C}(I) : \forall x \in [0, 1], \exists y \in B(x, 1/m) \text{ such that}$$
$$B(y, \xi | y - x|) \cap Z(f) = \emptyset \}.$$

We show that $C(I)\setminus C_m$ is porous. Let $f\in C(I)$, $\eta\in (0,1)$ and $\varepsilon>0$. There is a number $\delta>0$ such that $|x-x'|<\delta$ implies

$$|f(x)-f(x')|<\varepsilon(1-\eta).$$

Consider the points $0 = a_0, a_1, \dots, a_n, a_{n+1} = 1$ such that

$$a_{i+1}-a_i=\delta'\leq \min\{\delta,1/m\}\quad (i=0,\ldots,n)$$
.

Also let

$$c_i = a_i + \frac{\delta'(1-\xi)}{2}, d_i = a_{i+1} - \frac{\delta'(1-\xi)}{2} \quad (i=0,\ldots,n).$$

We define a function $g \in C(I)$ linear on each one of the intervals $[a_i, c_i]$, $[c_i, d_i]$, $[d_i, a_{i+1}]$ (i = 0, ..., n) such that

$$\begin{split} g(a_i) &= f(a_i) \;, \\ g(c_i) &= g(d_i) = \left\{ \begin{array}{ll} f(a_i) + \varepsilon \eta & \text{if } f(a_i) \geq 0 \\ f(a_i) - \varepsilon \eta & \text{if } f(a_i) < 0 \;. \end{array} \right. \end{split}$$

Clearly $d(f, g) < \varepsilon$.

Now we show that $B(g, \eta d(f, g)) \subset C_m$. Let $h \in B(g, \eta d(f, g))$.

First we remark that $h([c_i, d_i]) \neq 0$ (i = 0, ..., n). Indeed for $x \in [c_i, d_i]$, if $f(a_i) \geq 0$, then

$$h(x)>g(x)-\eta d(f,g)>g(x)-\varepsilon\eta=f(a_i)\geq 0\;,$$

and, if $f(a_i) < 0$, then

$$h(x) < g(x) + \eta d(f,g) < g(x) + \varepsilon \eta = f(a_i) < 0.$$

Now let $x \in [0, 1]$. If $x \in [c_i, d_i]$ for some i then, clearly, we find $y \in [c_i, d_i]$ such that $B(y, \xi | x - y|) \subset [c_i, d_i]$, whence $B(y, \xi | x - y|) \cap Z(h) = \emptyset$. If $x \in [a_i, c_i] \cup [d_i, a_{i+1}]$ for some i, we choose $y = (c_i + d_i)/2$ and obtain $B(y, \xi | x - y|) \subset [c_i, d_i]$ whence again $B(y, \xi | x - y|) \cap Z(h) = \emptyset$.

Hence $C(I)\backslash C_m$ is porous and $C(I)\backslash \cap C_m$ is σ -porous. Since ξ was chosen arbitrarily in (0,1), the theorem follows.

REMARK. Clearly the previous result also holds for countably many level sets of the function f.

REFERENCES

- [1] A.M.Bruckner, Differentiation of real functions, L.N.M. 659, Berlin-Heidelberg-New York 1978.
- [2] E.P.Dolženko, *The boundary properties of an arbitrary function*. (Russian), Izv. Akad. Nauk. SSSR, Ser. mat. **31** (1967), 3-14.
- [3] P.M.Gandini, A.Zucco, *Porosity and typical properties of real-valued continuous functions*, Abh. Math. Sem. Univ. Hamburg **59** (1989), 15-22.
- [4] P.M.Gruber, Results of Baire category type in convexity. Annals of the New York Academy of Sciences 440 (1985), 163-169.
- [5] L.Zajíček, Sets of σ -porosity and sets of σ -porosity (q), Casopis Pest. Mat. 101 (1976), 350-359.
- [6] L.Zajíček, *Porosity and \sigma-porosity*, Real Analysis Exchange **13**(1987-88), 314-350.
- [7] T.Zamfirescu, *Porosity in Convexity*, Real Analysis Exchange, **15** (1989-90), 424-436.

[8] T.Zamfirescu, Baire categories in Convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 139-164.

Pier Mario Gandini Dipartimento di Matematica Via Principe Amedeo 8 Torino, Italy Tudor Zamfirescu Universität Dortmund Abteilung Mathematik 46 Dortmund, Germany