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1 Introduction 

We are in •3. The following is an open problem in the geometry of  convex surfaces 
rather than a joke: Does there exist a convex surface on which no geodesic is closed 
and all geodesics have length less than l? 

If the surface is smooth enough, then a well-known theorem of Liusternik and 
Schnirelman asserts that there are at least three simple closed geodesics. However 
this is not true in general. On many polytopal surfaces there is no simple closed 
geodesic, as observed already by Aleksandrov [1, p. 377]. But, at least, these surfaces 
have many infinitely long geodesics, as we easily see. For arbitrary surfaces of  class 
C l this is no longer clear and, in fact, neither proved nor disproved. Most convex 
surfaces in the sense of  Baire categories (i.e. all except those in a set of  first category) 
are of class C t but have no closed geodesic (even with self-intersections), as Gruber 
[5] showed. At the same time, on most convex surfaces most segments (a segment is a 
shortest path between two points of the surface [4]) are not extendable (use Theorem 1 
in [9]), in the sense that no geodesic will contain such a segment as a proper subset. 
However, we shall prove here that most convex surfaces have many arbitrarily long 
geodesics. Moreover, we shall even show that most convex surfaces have arbitrarily 
long geodesics without self-intersections. While the first property does not surprise 
the differential geometer, the latter surely does. 

Pogorelov [7] provided a version of Liusternik-Schnirelman's theorem which ap- 
plies for any convex surface. He introduced the notion of  a quasigeodesic and proved 
that on any convex surface there exist at least three closed quasigeodesics. However, 
a quasigeodesic may fail to be locally a segment. 

For the reader's convenience we shall recall in the next section Aleksandrov's 
gluing theorem, a few related notions, as well as existence and uniqueness results 
concerning the realizability of convex surfaces with given intrinsic metrics, mainly 
due to Aleksandrov and Pogorelov. 
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2 Notation and basic facts 

We denote by AC the length of the curve C. For r 6 ~,  x 6 ]R 3, A c ]1~ 3, let 

and 

B ( x ,  z') = {y  E ]t@: Ilx - Yll < ~} 

Let ~ be the space of all convex surfaces T, i.e. boundaries of  bounded open convex 
sets. Equipped with the usual Hausdorff distance ~5, . S  is a Baire space. For any 
convex surface S, let ds  denote its intrinsic metric. 

We shall make use of  the following fundamental generic result of Klee [6]. 

Klee 's  generic theorem. Most convex surfaces are smooth and strictly convex. 

For other results on most convex surfaces see the survey article [11]. 
Let S be a convex surface. A geodesic is the image of an interval [ c I~ through 

a continuous mapping c : I  --~ S, such that every point in ! has a neighbourhood N 
in 1 for which c(N) is a segment. If I = R and e is periodic then e(I) is called a 
closed geodesic. If I is compact, we call e(I) a geodesic arc. This is said to be closed 
(a closed geodesic segment in Klingenberg's terminology [7]) if the images of  the 
endpoints of  I through c coincide. 

For any Jordan arc J with definite directions at its endpoints the notions of a 
right and a left swerve can be introduced (see, for example, [4, p. 108-110]). They 
correspond to the integral of  the geodesic curvature along the arc in the differential 
case. A quasigeodesic arc is a Jordan arc which has definite directions at each point 
and every subarc of  which has non-negative right and left swerves. If we take a Jordan 
(closed) curve instead of  a Jordan arc in the above definition we obtain the notion 
of  a closed quasigeodesic. If  the full angle at the endpoints of a quasigeodesic arc is 
at most 7r, we have a degenerate case of  a closed quasigeodesic called quasigeodesic 
arc traversed back and forth. All these are quasigeodesics. 

Pogorelov 's  theorem [7]. Any convex surface possesses three distinct quasigeodesics 
each of which is either a closed quasigeodesic or a quasigeodesic arc" traversed back 
and forth. 

Let M1, . . . ,  Mn be two-dimensional manifolds, each with its own intrinsic metric. 
For every i consider an open set Di with/3~ C M~ and whose boundary is the union 
of pairwise disjoint rectifiable Jordan curves C~ , . . . ,  C~i. We say that the manifold 

M is obtained by gluing t oge the r /31 , . . . , / 3n  if all C~ are decomposed into Jordan 
arcs which are pairwise identified in such a way that any two identified subarcs of  
these identified Jordan arcs have the same length, while/31 t2 . . .  U/3n  = M.  

Aleksandrov ' s  gluing theorem [1, p. 362; 4, p. 154]. Let M1 , . . . ,  Mn have non- 
negative curvature and let the swerve have bounded variation on any subarc of any C[. 
The manifoM M obtained by gluing together/31,. . . ,  /3~ has non-negative curvature 
if and only if for any identified subarcs A ~ C C~ and AJ C C~ the sum of the swerve 
of A i in Mi towards/3~ and the swerve of AJ in Mj towards/3j is non-negative and 
for any point p belonging to more than two sets/3~ the sum of the angles of these/3i 
at p is at most 2TO. 

The proof of  the next result can be found in [1, Chap. VI]. 

A ( x , A )  = inf I I x - Y l l -  
ycA 
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Existence theorem. Each polyhedral metric with non-negative curvature on the 
sphere can be realized as a polytopal surface. 

The following theorem is due to Pogorelov [8]. It was proved earlier by Olovian- 
ishnikov in the case S is a polytopal surface [1, p. 336]. 

Uniqueness theorem [2, p. 158]. Any convex surface isometric to a convex surface 
S is congruent to S. 

Let again S be a convex surface. We define the sphere bundle TIS  associated 
with S as the set of all pairs (x, r),  where x is a smooth point of S and 7- a tangent 
direction at x. The topology is that induced by ~3 x ~2 For (x, T) 6 7"1 S, the union 
of all geodesics starting at x in direction r (if any) is itself a geodesic and we denote 
it by G(x, "r). If there is no such geodesic, set G(x, ~-) = {x}. Also, put 

S min{AG(x, ~-), AG(x, --T)} if G(x, T) U G(x, --T) is a geodesic, 
#(x, 7-) 

0 otherwise. 

3 Two lemmas 

We shall make use of the following lemma. 

Lemma 1 [1, p. 106]. Let S, $1, $2, . . .  be convex surfaces, on which the points x, 
y E S, Xn, y~ E Sn are chosen (n E •). I f  S~ ---* S, xn --* x and y,~ --* y, then 
ds~ (xn, yn) --' ds(x ,  y). 

The next lemma is an essential tool for the proof of our results. 

Lemma 2. Let P be a polytopal surface and G a geodesic arc on P. I f  S 6.5 z~ and 
S ---* P then there are geodesic arcs Gs  C S such that Gs  ~ G. 

Proof. Let z be a point in the interior of P and p:]~3 __, p the central projection 
with centre z. If S is close enough to P, Ps = P[s is a homeomorphism according to 
which, by Lemma 1, ds converges to de. First suppose the endpoints p, q of G are 
not vertices of P. Then there is a line-segment L C ~2, an open rectangle R D L 
and a locally isometric map_ping f : / ~  --~ P such that f (L )  = G. For any points u, 
v E /~ joined by arcs J C R, let 

d's(U , v) = i~f Aps~(f(J)) .  

It is easily checked that d~ is a metric in [ / and  p~l o f is a local isometry between 
(/~, d~) and (S, ds). Let G~ be a shortest arc from p to q in (/~, d~) and put Gs = 

--1 ! Ps (f(Gs))" Then G~ ~ L and Gs --+ G. Also, for S close enough to P,  G~ C R 
and therefore Gs is a geodesic arc in S. 

The conclusion can be immediately extended to any geodesic arc G c P since G 
can be approximated by geodesic subarcs with endpoints different from vertices of P. 

4 Densely many long geodesics 

Theorem 1. For most convex surfaces S the following holds:for any positive number 
r there is a set T dense in TLS such that, for any ( x , r )  6 T, there is a geodesic of  
length r, with midpoint x and with directions T and - r  at x. 
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Proof. We prove the theorem by showing that most surfaces in ~/~+ have the required 
property, the space &r+ of  all smooth strictly convex surfaces being residual in . /J by 
Klee's generic theorem from Sect. 2. 

Let K C II~ 3 and Z c ~2 be open balls. For any surface S E .W, let 

Define 

or  

I(S) = T~S n (K x Z) .  

.c/s 22) = {S c ./"+ : I (S )  # 13 and V(x, ~-) C I(S), #(x, 7) <= n}.  

We first show that )Pnn(K, i2) is nowhere dense in . / '+ .  
Let ~ '  C .2 ~" be open. Consider So c ~ ' n . )  "~+ and suppose I(So) = 13. Then either 
(i) S0 N K  = 13 

(ii) So n K ~: 0, but for any point x in So n K the set Tlz  n 12 is empty, where 

T,x = {v E ~2:(X,T) C T I S 0 }  . 

If  (i) holds then we can easily find a surface in (~' N , / '+  disjoint from K. If (ii) holds 
then, for any x C SOAK, the set T l x N ~  is empty; indeed, if T l x 0 N 2  Af 13 for some 
point x0 E So O K then, since So is of  class C 1 and strictly convex, for a suitably 
chosen point x E So n K we would have TlX n Z # 13, which is false. However 
Tlxo N ~ may be nonempty for some xo C bd K.  To avoid this, consider a homothety 
h having the centre in So n K and the ratio ~) > 1. Then 

h(So n K)  D h(So) N K ,  h(So n bd K)  N / ~  = 13 

and therefore, since So E .5 "+ ,  

T1 h(So) n I7s x 2 = 13. 

For 0 -  1 small enough, h(So) C d'. Now, for a whole neighbourhood ./I i" of h(So) in 
,~+,  the sphere bundle TtS m i s s e s / (  x ~ for any S E .~J', whence . / r 1 6 3  ~ )  = 
0. It remains to consider the case I(So) + 13. 

Let P E ~; be a polytopal surface such that I(P) ~= !3. Consider now (x0, T0) E 
I(P). Since in all tangent directions T at x0 except for at most countably many 
AG(xo, r )  = o~, we can find a tangent direction ~-l at x0 such that rl C S and 
p(x0, ~'t) = cx~. Let F be the geodesic arc with midpoint x0, with directions -t-~-i at 
x0 and of  length 2n + 1. Choose c~ E (0, 1) such that B(xo, ~) C K \ E ,  where E is 
the union of  all edges of  P .  

According to Lemma 2, on each surface S c .;/:+ there is a geodesic arc Gs such 
that S ~ P yields Gs --, F. Hence, the midpoint x s  of  G s  converges to x0 and 
there is a number/3 E (0, ~ /2)  such that ~(S, P)  < /3 implies ~(Gs,  F)  < c~ 2. Let 
u, v be the endpoints of  the longest subarc A C Gs containing xs  and included in 
B(xo, a). 

Denote by A', u',  v ~ the orthogonal projections of  A, u, v on P ,  respectively. For 
c~ --* 0, the tangent plane H~ at x to S converges uniformly for x C S N B(xo, c~) to 
the plane H of  the facet of  P at x0. Thus, not only A, as a geodesic on a smooth 
convex surface, is differentiable, but also A ~, for S close enough to P .  Then, there is 
a point w'  E A'  such that the tangent direction r '  of  A'  at w' (from u '  to v') equals 
tlv'-u'll  -~ ( v ' - u ' ) .  If c~ ~ 0, then [iv'-UtI[ -1 (V t -  U t) --'-+ T�91 because A(u' ,  F )  < c~ 2, 
A(v' ,  F)  < ~2 and JJv' - u'll > ~. 
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Let w be the point of A (unique for o~ small enough) whose orthogonal projection 
on P is w' and let r~ be the tangent direction of  A at w (from u to v). Since 
w E B(x0, c~), if o~ --+ 0 then w ~ x0 a n d / / ~  --+ /7, whence I l r w  - ~-'11 -- '  0. This 
together with "r' --* ~-l proves that r,~ --* rl. For c~ small enough, 7% E S .  Since 
w E B(x0, c0, we have (w, 7%) E K • S and, for c~ --* 0, not only x s  ---* x0, but also 
w --~ x0. Hence the distance from xs  to w on Gs converges to zero. This together 
with AGs ---* 2n + 1 implies #(w, "r~o) > n for a small enough. 

This shows that no surface S E . / +  at Hausdorff distance less than /3 from P 
belongs to .~/~(K, s Therefore Y~(K, YT) is nowhere dense in . / '+ .  

Now let { x ~ : n  E N} be dense in ~3 and {~r~:n E N} dense in ~2. Put 

D(crn, ~o) = {a E ~2:dsz(o',O'n) < ~o} 

and 
' ~ , m , p , q  = , ~ (  B ( x r n ,  q-1), D(ap, q-l)). 

Each set ,~,m,v,q is nowhere dense in ,~+.  Thus most surfaces S E .9 ~'+ belong to 

J+\ U �9 n , m , p , q .  
n,ra,p,q 

We verify for such a surface S the property of  the statement. Let n > r/2. Take any 
open set O C T1S. Consider the open balls K and S in R 3 and ~2 respectively, such 
that O M (K  • K) ~: 0. Take (x* , r* )  in this intersection. Choose m, p, and q such 
that 

x* E B(x.~,q -l) C K ,  r* E D(~Tv, q -1) C r .  

Since S {t ,~,m,p,q but 

TtS M (B(x~, q-l) x D(op, q-l)) =~ O, 

for some (x, r )  in the above set #(x, 7-) > n > r/2. 
The proof is finished. 

5 Long geodesics without  self-intersections and many  closed geodesic arcs 

Theorem 2. On most convex swfaces there are non-self-intersecting geodesics of ar- 
bitrary finite lengths. 

Proof It suffices to show that the set .~/n of  all S E Y admitting only non-self- 
intersecting geodesics of length at most n is nowhere dense in J .  

Let (~ C .~  be open and choose a smooth surface S E #~. Close to S, in c ~', we 
find a polytopal surface P such that each vertex v of  P has a spherical image which 
is small enough to ensure that the full angle of P at v is more than 7v. By Pogorelov's  
theorem, /9 has at least three closed quasigeodesics. We only use the existence of  
one of them (which is much easier to prove, see [1, p. 378]). Let G be this closed 
quasigeodesic. The construction which follows was independently found and used by 
Aleksandrov and Burago in [3]. As a Jordan curve, G decomposes P into two pieces 
P1 and P2, each of which has an inner metric with non-negative curvature. Using 
Aleksandrov's gluing theorem or only the gluing theorem for polygonal domains 
(see [1, p. 317] or [4, p. 150]), we obtain a manifold with non-negative curvature 
by gluing together PI,  P2 and two rectangles Rl ,  R2, of  lengths /~,/2 and widths 
wl,w2 respectively, such that /l + / 2  = AG and wl = w2 = e, for small e. By 
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the Existence theorem and the Uniqueness theorem (from Sect. 2), there is a unique 
(up to a rigid motion of  R 3) polytopal  surface P '  isometric to the above manifold. 
By letting e --* 0 and choosing the corresponding surface P" in some big ball, a 
sequence of  surfaces Pe' k with ek --o 0 converges by Blaschke 's  selection theorem 
to a surface which, by the Uniqueness theorem combined with Lemma l ,  must be 
congruent to P .  A sequence of  suitable congruent copies Pek of  P ~  converges then 
to P and we therefore find, for some k, a surface P~k r C~. Put e = ek and let R 

be the portion of  P~ corresponding to Rt  U R2. Choose m > n (AG)- I  + 1 and let 
X l , . . .  xm E R correspond to the m points of  a small edge of  R1 which divide it into 
m + 1 line-segments of  equal lengths (the small edges of Rl  and R2 are pairwise 
glued together). Thus the rectangle R l  t_J R2, now considered in ]i{2 with just one pair 
of  edges identified, has copies x~ and x~' (identified in R) of  xi  on its opposite short 

m - - I  

' " Then U Li  corresponds to a edges. Let Li  be the l ine-segment from x~ to xi+ 1. 
i=1  

geodesic F on Pc, with endpoints x l ,  xm and passing through x 2 , . . . ,  Xm-l .  Since 
ALi > AG (i = 1 , . . . , m -  1), 

A F  > ( m -  1)AG > n .  

Consider 
T = {x e • 3 : A ( x , F )  < e ( 6 m ) - l } .  

By Lemma 2, for /~  > 0 small enough and for any convex surface S at Hausdorff  
distance at most /3  from P~, there is a geodesic arc A C T on S joining a point close 
to Xl and a point close to xm. Thus A is a geodesic on S of length close to A F  and 
without self-intersections. This yields S ~ ~ ,  and the theorem is proved. 

It is unknown whether an arbitrary convex surface contains closed geodesic arcs. 

Theorem 3. On most convex surfaces there are infinitely many pairwise disjoint closed 
geodesics arcs. 

Proof. We see as in the preceding proof  that the family of  all convex surfaces admit- 
ting at most n pairwise disjoint closed geodesic arcs is nowhere dense in .S :  we take 

' " instead of  L~. m = n + 1 and consider the line-segments from x~ to x i 
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