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We show that every arrangement of pseudolines

in the plane can be extended to a topological pro-

jective plane, a projective geometry whose pcints

and topology agree with the real projective p kme

and whose lines also have the topology of the pro-

jective plane. In this topological projective plane

the given arrangement becomes au arrangement

of “straight lines”. This makes it possible to re-

alize a “topological sweep of an arrangement” as

the familiar sweep by a family of parallel lines.

We then use this result to construct a universal

topological plane, one in which every arrange-

ment of pseudolines is stretchable. Both results

had been conjectured by B. Griinbaum.
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1 Introduction

An arrangement of psedohnes in the real pro-

jective plane RP2 is a finite family of Jordan

curves in RP2 that do not separate the plane, ev-

ery two of which intersect at precisely one point,

at which they cross. Such arrangements, which

exhibit many of the properties of straight line

arrangements but are more general, have been

studied since the work of F. Levi [7]; see [4] for

an extensive bibliography up to 1971.

RP2 is normally thought of as the Euclidean

plane, completed by adding a “line at infinit y“.

For our purposes it will be convenient to rep-

resent RP2 as the closed unit disk A in the

plane, with antipodal points on the unit circle

identified. We will also find it convenient to fix

a particular homeomorphism of the Euclidean

plane to the interior of A, obtained by projecting”

points through the center of a sphere tangent to

the Zy plane to the lower hemisphere, followed

by orthogonal projection back into the zy plane.

This homeomorphism t akes the vertical lines, for

example, to a family V of vertical semi-ellipses

centered at (O, O) and passing through (O, 1) and

(O, -l). Thoughout this paper we will take this

as the model of the real projective pllane.

Assuming that the line at infinity [the bound-

ary of the unit disk) is one of the pseudolines in

an arrangement, we can represent the arrangem-

ent of pseudolines in the projective plane as a

finite family of simple arcs in A connecting an-

tipodal points with the property that every two

intersect at precisely one point, at which they

cross. A spread of pseudolines in RP2 is then

the continuous version of an arrangement: it is
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an infinite family of simple arcs in A connecting

antipodal points, such that

1.

2.

Every two arcs intersect at precisely one

point, at which they cross.

There is a mapping 1 from the unit circle

C = 6’A to the family of arcs such that l(p)

has an endpoint at p and is a continuous

function (in the Hausdorff metric) of p E C.

Thus a spread is a one-parameter family of

pseudolines that resembles a one-parameter fam-

ily of lines in RP2. On the other hand, we

can imagine a topological version of the pro-

jective plane endowed with not only the topo-

logical structure of RP2 but including also all

the lines of the projective plane; i.e., this collec-

tion of points and “lines” should be a projective

plane by virtue of satisfying the axioms of pro-

jective geometry. Following Griinbaum [4] we de-

fine a topological projective plane T as an infinite

family of simple arcs in A connecting antipodal

points, such that

1.

2.

Every two arcs intersect either at their com-

mon endpoints, or else at precisely one

point, at which they cross.

Given any two points p, q of A, at least one

of which belongs to the interior of A, there is

a unique pseudoline /(p, q) of the family join-

ing them, and l(p, q) is a continuous function

(in the Hausdorff metric) of p, q. (It then fol-

lows that given four points p, q, p’, q’ in A,

the point l(p, q) n l(p’, q’) varies continuously

with the four points. )

Thus a topological plane is homomorphic to the

real projective plane, as is its space of lines with

the topology induced by the Hausdorff metric.

We can obt ain many topological planes in a triv-

ial way by taking any homomorphism of the

projective plane and designating as lines the im-

ages of the lines in the real projective plane. We

shall consider two topological planes that differ

in this way to be isomorphic. Hilbert [6] con-

structed a (Euclidean) topological plane in which

Desargues’ theorem is false (his goal was to show

that this theorem was independent of the axioms

of incidence, order, parallels, completeness, and

most of the congruence axioms), and which thus

cannot be completed to the real projective plane.

What we call a topological plane is identical to

the real projective plane in both its topology and

its incidence structure. It differs only in that the

lines of a topological plane need not arise from

a linear structure, in the sense that the topolog-

ical plane may not be coordinatizable; i.e., its

lines may not simply be the solution sets of lin-

ear equations (which in fact will always be the

case if Desargues’ theorem does not hold).

Motivated by the fact that any finite arrange-

ment of straight lines can be extended to a spread

of straight lines, B. Griinbaum conjectured in [4]

that the same should hold for pseudolines, a con-

jecture that we proved in [3]. Again in [4], he

made the much bolder conjecture that any ar-

rangement of pseudolines can be extended to a

topological plane. The truth of this conjecture

would immediately provide a proof of the exis-

tence of a spread since then we can mimic the

argument for straight lines that consists of or-

dering the lines by their slopes and rot sting each

to its successor about their point of intersection.

It would also follow from the truth of this con-

jecture that the “topological sweep” method in

computational geometry [1, 8], which is actually

a discrete process mimicking a continuous sweep

of a pseudoline through an arrangement, can in

fact be carried out continuously. Simply t ake the

arrangement that is to be swept, adjoin pseudo-

Iines through a fixed point p on the line at infin-

it y corresponding to the “cut s“ of the t orologi-

cal sweep, and extend this enlarged arrangement

to a topological plane. The family of parallels

through p then sweeps the given arrangement in

the desired manner.

Our Theorem 1 will establish the validity of

this stronger conjecture. The proof, which is

much simpler than the proof of the first conjec-

ture in [3], is yet another illustration of the fact

that it is frequently easier to prove the “right”

stronger theorem than a weaker version of that

theorem.

It has been known since the work of Levi [7]

that not every arrangement of pseudolines in

RP2 is stretchable, i.e ., isomorphic to an ar-
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rangement of straight lines. Thus RP2, which

cent ains isomorphic copies of all straight line ar-

rangements, fails to cent ain an arrangement iso-

morphic to a non-Desargues configuration,, for

example. On the other hand, there is no a pn”ori

reason why a t opologicrd plane that does COXIlhhI

such an arrangement, and which exists by virtue

of Theorem 1, should necessarily contain isomor-

phic copies of all pseudoline arrangements. Thus

Griinbaum asked, in [4], whether there can ex-

ist a topological plane that is universal for all

arrangements, i.e., that cent ains an isomorphic

copy of each. In Section 3 we use Theorem 1

to show that such a plane, in which every ar-

rangement is simultaneously “stretchable”, does

in fact exist.

2 Extending an Arrangement

to a Topological Plane

Let us call an arrangement monotonic if each

pseudoline of the arrangement is compatible with

the pseudolines in V (which we call “vertical”

lines), i.e., if each pseudoline meets each vertical

line exactly once. It is not difficult to see that ev-

ery arrangement of pseudolines is isomorphic to

a monotonic arrangement, and that this isolmor-

phism can in fact be achieved by a homomorp-

hism of the projective plane; see [2] for a proof.

We shall prove the stronger theorem ( whiclh we

need in order to construct a universal topolog-

ical plane) that every monotonic arrangement,

together with V, can be extended to a topolog-

ical plane. The idea of the proof is to extend

the given arrangement by adjoining each line of

V that passes though a vertex of the arrangem-

ent. Each face of this enlarged arrangement is

either a triangle (with a side in V) or a trape-

zoid with two vertical edges. Then for each face

of this extended arrangement we straighten the

arrangement of (4 or 5) pseudolines that consists

of C = 8A together with the pseudolines that

support the edges of the face (see [2]). We then

use the straight lines meeting the straightened

face to construct the portion of the topological

plane meeting that face, and finally we connect

appropriately the various pieces of each pseudo-

line. It will then remain to show that each pair of

the resulting “pseudolines” crosses at most once

and that these pseudolines vary continuously in

the Hausdorff metric.

The proof that each pair crosses at most once

is facilitated by the notion of a proper crossing.

Let 1 and /’ be any two curves in A connecting

distinct antipodal endpoints pl, p3 and p2, p4, re-

spectively. / and 1’ may intersect at more than

one point. Let q be an isolated point of inter-

section of 1 and /’ at which they cross. There is

some small topological disk A’ containing q and

no other point of intersection of / and /’. 1 and 1’

intersect the boundary of disk A’ in four points,

Pj, P!, P4, and Pi, where P: lies betv~een Pi and

q on / or 1’. We say that q is a proper intersec-

tion point of 1 and 11if 1 and l! cross at q and if

P1, P2, PS, and PA occw in the same Order around
A (clockwise or counterclockwise) as p{, pi, pj,

and pi do around A’. (See Figure 1.)

Figure 1: q is a proper intersection; T is not.

We can then replace the global condition that

curves intersect at precisely one point, at which

they cross, by the local condition that every

point of intersection is proper.

Lemma 1 Two pseudolines in the diisk that have

at most a jinite numbev of intersections inter-

sect at precisely one point, at which, they cross,

if and only if every point of intersection of the

two curves is a proper intersection point.
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Proof: Since the endpoints of each curve are an-

tipodal, the first curve separates the endpoints of

the second and thus the curves must have at least

one intersection point. If there is only one, that

intersection must clearly be proper. On the other

hand, if our two pseudolines / and /’ intersect at

more than one point, we can list the points of

intersection in order along 1. Let q and q’ be two

adjacent points of intersection. It is not hard to

see that if q is proper then q’ is not. •1

Theorem 1 Every monotonic arrangement of

pseudolines in A, together with V, can be ex-

tended to a topological plane.

Proof: First we describe the construction of the

infinite arrangement of pseudolines that will con-

stitute the lines of our topological plane.

Let Z be the given arrangement of n mono-

tonic pseudolines in the unit disk A with end-

points at antipodal vertices together with the

pseudolines from V that pass through vertices

of the given arrangement. The members of Z

partition A into a 2-dimensional cell complex,

consisting of a set of open triangular and trape-

zoidal faces F(L), relatively open edges E(t),

and vertices V(Z). Edges in C are considered

as belonging to 17(,C), and their endpoints as be-

longing to V(Z).

For each ~ ~ I’(L) we fix a homomorphism

@t that straightens the arrangement consisting

of C and the pseudolines bounding ~, and maps

straight vertical lines to straight vertical lines.

For each pair of distinct points p and q lying

on the boundary of ~, there is a straight line

segment s connecting @f(p) to d~(q). +71(s) is

an arc in A from p to q. These arcs form the

“pieces” of the pseudolines we are constructing.

Thus for each point p lying on some pseudo-

line in L, there is a set of arcs AP having p as one

endpoint. Eliminate from AP any arc that is a

subset of some other arc in AP. (If 16 L cent ains

p, then there initially will be many arcs with end-

point p contained in 1; we eliminate all but the

two longest.) Define a function @P from AP to C

as follows. Each arc a G AP is the inverse image

of the straight line segment @f(a) under some

transformation #f. The segment @f(a) lies on

some ray r with endpoint #f(p) pointing toward’

a point #f(z) 6 of(C). Let @P(a) = z. Thus @P

maps each arc a ~ AP to a point z ~ C. It is

not hard to see that this mapping is one-to-one

and onto. It is also continuous in the Hausdorff

metric.

We now link the pieces of a pseudoline that end

at p. For each pair of antipodal points z, z G C,

join @jl (z) to +;l (z). The linked pieces form

curves connecting z to z which define the pseu-

dolines in A.

Let 1 and 1’ be two curves in A connecting

distinct antipodal endpoints PI, PS and PZ, PA,

respectively. Let q be some intersection point

of 1 and 1’ lying on the interior of a face

~. 1 and 1’ intersect the boundary of ~ in

four points, p{, pi, pi and pj, where p; lies be-

tween pi and q on 1 or i’. The order of

P1, P2, P3 and P4 aro~d A matches the order of

@f (Pi), 4f(P2), #’f(PS), and 4i(P4) aro~d +f (A).

The order of pi, pj, p~ and pj around ~ matches

the order of ~f(p~ ), d~(p!), #f(P$), and @f (Pi)

around ~t (~). By construction the intersection

of @f(1) and of (/’) is proper, so the intersection

of 1 and i’ must be proper. A similar argument

holds if q lies on the boundary of a face ~. Thus

the defined curves form pseudolines in A. It is

equally clear that the resulting pseudolines vary

continuously. ❑

Corollary 1 Every arrangement of pseudolines

in A can be extended to a spread [3].

Proof: Take the extension to a topological plane

provided by Theorem 1, and—the pseudolines of

the arrangement being ordered by their intersec-

tion with C—t ake the union of the pencils found

bet ween each pseudoline and the next. It is easy

to verify that the resulting family is a spread. ❑

3 Constructing a Universal

Topological Plane

Theorem 2 There exists a universal topological

plane T which contains every arrangement up to

isomorphism.
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q E2 . . .

Figure 2: Construction of tower of Ai’s.

Proof: Let Ml, M2, M3,. . . be a listing of all ar-

rangements up to isomorphism. It is easy to con-

struct arrangements Al ~ A2 c A3 ~ . . . such

that A; cent ains an arrangement isomorphic to

M;. If Am is the union of all these A;, then every

arrangement is cent ained in Am. However, it is

not clear how or even if Am can be extended to

a t orological plane. (In fact in general it cannot,

since continuity may already be violated in A,=.)

We first outline a more specific construction

of the tower of Ai’s which will lead to a topolog-

ical plane cent aining Am. For each Ai choose

an ~i > 0 where li~-+m ~i = O. Assume we

have already constructed a monotonic arrange-

ment Ai cent aining an arrangement isomorphic

toitljforallj<i. Using Theorem 1, let Ti

be a topological plane cent aining Ai U V in its

set L(Ti) of pseudolines. We will choose a finite

subset C’i of L(Z’i) which will form a “mesh” of

“size” ~i on Ti, in a sense to be made precise.

Let Bi H C’i U Ai. Extend Bi to a monotonic

arrangement cent aining an arrangement kOlIIIOr-

phiC tO Mi+l. To extend l?i take a new member

of L(Ti) in general position with respect to the

members of Bi, thicken it slightly to a strip S,

and embed a “thin” copy of Mi+l into it, remov-

ing the rest of S. Let this arrangement be Ai+l.

(See Figure 2.)

Let S be the set of sequences 11, Zz, 13, . . . where

Ii E L(Z’i). The pseudolines in our univemil

topological plane Tm will be the limits of the

Cauchy sequences in S under the Hausdorff met-

ric. (Since the space of non-empt y closed subsets

of A is compact in the Hausdorff metric [5, ‘lhe-

orem VI, p. 150], these Cauchy sequences con-

verge. ) We will show that these limiting sets are

Jordan arcs connecting antipodal points which’

obey the axioms above. Since each cur ve 1 c Am

is the limit of a Cauchy sequence in S, the set

Am ~ L(Tm), and thus -L(T@) contains every

finite arrangement of pseudolines up to isomor-

phism.

We now specify how the “meshes” Ci are con-

structed from the Ti. Let P: be the set of pairs

of points Z, y c Ti where d(z, y) ~ ~i. For each

pair (z, y) c Pi, removing z, y and every pseudo-

line that passes through either z or y from Ti di-

vides the remaining pseudolines in L(Ti) that are

within ei of li(z, g) into four homotopy classes.

Choose a representative from each class and let

C(O, y) be the resulting set of four pseudolines.

Let IV. and ~U be neighborhoods of x and yin Ti

that do not intersect any pseudoline in C(z, y).

{iVZ X -iVV :2, y C P;} forms an open covering

of P:. Since P: is compact, this covering has a

finite sub covering @. Let

Ci = ~ C(Zjg).

Nzx Nu@

Lemma 2 Let T be any topological

taining Ci. If d(x, y) > ~i} X,V E T,

plane con-

then there

ezist neighborhoods N. and NY of x und y such

that for all 1 : L(T) where 1 n N. # 0 and

1 n NV# (3,we have d(l, li(~,~)) < 2~i.

Proof: Omitted. •1

We now claim that Tm is a topological plane.

For this purpose we must show that L(Tm),

which is defined as the limit of Cauchy sequences

of pseudolines, is in fact a set of curves connect-

ing antipodal points. Curiously, this will fol-

low from the fact that every two distinct points

z, y G Tm are cent ained in a unique limiting set

in .L(Z’@).

Let z, y be any two distinct points in

Tm . Consider the sequence ll(z, y), /2(z, y),

13(z, y),.... For any e > 0 there exists an i

such that ~i < min(e, d(z, y)). By Lemma 2,

d(lj(z, y),lk(z, y)) < 2G for all k,j > i.

Thus, the sequence ll(z, y), 12(2, y), 13(2, Y),. . . is

Cauchy and its limit is in L(Tm). Since z, y are

points in every element of the sequence, they are
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also in the limit, hence there exists at least one

set in L(T@) containing z, y.

Assume there were two distinct sets S1, sz G

L(T@) cent aining both z and y. Without loss

of generality, there must be some point z # S1

with z E S2. The set S1 is the limit of closed

subsets of a compact set, so it must be compact.

Let e = d(z, Sl). There exists an i such that

e~ < min(E/4, d(z, g)).

By Lemma 2, there exist neighborhoods ~.

and Ifv of z and y such that any pseudoline

1 ~ Tk, k ~ i that intersects both ~z and iVV lies

within distance 2q of l~(z, y). Since z, y 6 sl,

there must be a Cauchy sequence converging to

S1 whose members eventually meet both ~z and

~v. By Lemma 2, each of these pseudolines lies

within dist ante 2~i of Zi(z, y). Thus each of these

pseudolines lies within distance 2~i + d(li(z, y), Z)

of z, and d(z, S1) < 2~i + d(li(z, y), z). Since

d(z, S1) = c and ~i < e/4, we conclude that

d(l~(z, y), z) > e/2.

On the other hand, there must be a Cauchy

sequence converging to sz whose members even-

tually meet both ~z and ~V. Again by Lermna 2,

each of these pseudolines lies within distance 2~i

of Ji(z, y). Since z lies in the limit of these pseu-

dolines, O!(/i(z, y), Z) < 26; < c/2, a contradic-

tion. We conclude that S1 = S2, i.e., that every

pair of points z, y is cent ained in a unique set

Im(z, y) E L(z’m).

We can now show that L(Z’M) is a set of curves.

Since V ~ Ti for every i, the vertical lines V all

belong to L(T@). Let s be an element of L(Tm)

that is not a vertical line. .s is the limit of a set

of pseudolines each of which intersects every ver-

tical line 1 E V, so s must intersect each vertical

line in V as well as the line at infinity. But s

can only intersect each vertical line once, or else

there would be a pair of points cent ained in two

different sets of L(T@). Thus s can be parame-

trized by the vertical lines and can be expressed

as the graph of a function on P1. Since s is the

limit of graphs of continuous functions and is it-

self the graph of a function, it also is continuous.

Thus s is a curve connecting antipodal points.

Finally, the continuity of Z@(z, y) as a function

of z and y follows by yet another application of

Lemma 2. •1
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