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lnvariance of Convex Sets Under Linear 
Transformations 
GERARD SIERKSMA 
University of Groningen, The Netherlands 

VALERIU SOLTAN* 
University of Kishinev, Moldavia 

TUDOR ZAMFIRESCU* 
i i i i h i ~ i i ~  of Eortrnund, Ge:,za,vy 

This paper deals with the space ?r(X ,X ) of ail linear transformations L that leave convex sets invariant; 
for convex sets X and Y in R ~ ,  a ( X , Y )  = { L  / LX c Y). If (X = Y =)K is a convex body then faces 
of K invariant under L are determined in case 0 $ intK. Moreover, invariant supporting hyperplanes of 
K are determined in case K is a simplex in general position It is shown that r(P1,P2) is polyhedral if 
Pi and P2 are polyhedral. Finally, it is shown that for any polyhedral set P, n(P,P) is a polytope iff P 
is a polytope with linP = R ~ .  

1. INTRODUCTION 

Operators which leave invariant a cone in infinite-dimensional spaces have been 
studied extensively, especially in the context of gencralizations of the Perron-Froben- 
ius Theorem; see e.g. Barker, Schneider [2]. In Berman, Plemmons [3] nonnegative 
matrices of order n are studied as operators that map the nonnegative othant in R~ 
onto itself. In Adin [I] cone-preserving operators between d-dimensional polyhedral 
cones are investigated; using Gale diagrams, the extreme cone-preserving operators 
are determined in case the cone has either d + 1 or d + 2 extreme rays. In Elsner 
[5], spectral properties are determined for real square matrices that leave invariant 
a nontrivial convex set. In Sierksma, De Vos [lo], the extreme simplex-preserving 
operators are determined. 

In this paper we focus on convex sets and polytopes in FId. 
For any sets X , Y  c R ~ ,  we denote by n(X,Y) the family of all linear transfor- 

mations L from R~ into Fld such that LX c Y. If X = Y, we write a ( X )  instead of 
T(X: X )  and say that X is invariant under L. 

In this paper we consider linear transformations that leave convex sets invariant. 
In Section 2 we consider invariant faces, and in Section 3 invariant hyperplanes. In 

*The research for this paper was done during V. Soltan's stay and T. Zamfirescu's visiting professorship 
at the University of Groningen in 1990. 
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38 G. SIERKSMA, V. SOLTAN AND T. ZAMHRESCU 

Section 4 a representation of K(M,, M2) is given in case MI and M2 are closed con- 
vex sets and this is used in Section 5 to prove, among others, that 7i(P) is polytopal 
iff P is polytopal with lin P = R". 

A compact convex set with nnnempty interior is called a convex body. A convex 
set is called po[vhedral i f  it is the intersection of finitely many closed halfspaces. A 
bounded polyhedral set is called po&lopal (or a polytope). 

For any set X c FId, convX denotes the convex hull. affX the affine hull and 
linX the li~zear hull of X .  For a closed convex set M c w ~ ,  dimM denotes the 
dimension, int M the interior, rint M the relalive irlterior, bd M the boundary, ext M 
the set of extreme points, and extrM the set of extreme rays of M; the intersection 
of M with a supporting hyperplane is called a face of M. 

2. INVARIANT FACES 

Throughout, A' :_ Ktd i s  a cr,nvex hody jd 2 2) and L. (1 ~ ( k ' ) .  i n  the following two 
theorems, invariant faces o i  h iire determined IFcx ~ h r :  s a x >  0 g bdK and fi lj,' i;'. 
The case that 0 G int K is not studied in this paper 

THEOREM 1 I( 0 F bdk', tlzerz rhc fuce of K ef :fi?zr;lIes~ di~neiuion coiztaiiting 0 is 
invariant under L. 

Proof Let F be the face of K of smallest dimension with 0 E F. Let k = dimF 
and consider the linear subspace G generated by F. 

Clearly, if k = 0 then F = (0) is invariant. So, assume k > 1. Let H be a hyper- 
plane such that F = K n H. Suppose there is a point b E F such that Lb  # H. Let 
b' E intK. Denote by I?, 2nd i i  the ?we ha!fspaccs houndcd by N such that h", 
Lh E H+. From L(-h) E H -  it follows that 

for A > 0 small enough. Consider such a A and define 

For any p with 0 < < 1 there is a hyperplane separating K from p c ~ ,  because 
L ( p c A )  E H- yields pcx $ K. Thus (by taking p -+ 0) there is a supporting hy- 
perplane H' at 0 with cx E H' or separating cx from intK. Since cx E H+, we 
have H' f H.  Assume H' II G. Because -b E G, either both h* and cx lie on the 
same side of H', or both belong to H'. The first case contradicts the fact that H' 
contains cx or separates it from intK. The second contradicts h* E intK. Hence, 
dimG n H' < k. Consider now any hyperplane H' including H n H', distinct from 
both H, H', and supporting K .  Clearly, 

whence dim H* n K < dim G n H' < k, which contradicts the assumption that F has 
smallest dimension. 

Hence, for any point b E F, Lb E H n K = F. So, F is an invariant face. 
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INVARIANCE OF CONVEX SETS 

FIGURE 1. 

The following example shows that faces of K that are not of smallest dimension, 
need not be invariant under L. Let K be the triangle with vertices (O,O), (2,0),  (0,2). 
Then 

1 1 1 \  
L = - (  2 1 1) ) 

projects all points of the triangle on the line through (0,0) and (1, I). Clearly, the 
face ((0,0),(2,0)) is not invariant under I, .  

In the following theorem the concept of an (fline diameter is used; it is a chord of 
a convex body such that there exist distinct parallel supporting hyperplanes through 
both endpoints of the chord. 

For each K not containing the origin the greatest lower homothetic copy (glh- 
copy) KO of K is defined by 

KO = XoK 

with 
Xo = inf{X I XK n K # 0 ) ;  

see Figure 1. 

THEOREM 2 Let O @ K .  Then _F( hnr an nffine diameter (collinear with 0 )  such that 
each point of it is fixed under L. Moreover there exist m o  faces Fl and F2 of K with 
affFl fl affFZ = 0, each invariant under L. 

Proof Let 0 $ K and let KO be the glh-copy of K. Clearly, KO and K meet, but 
intKo n int K = 0. Consider a hyperplane H separating intKo from int K and the 
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40 G. SIERKSMA. V. SOLTAN AND T. ZAMFIRESCU 

faces Fo = KO n H of KO and F = K n H of K. Since both KO and K are invariant 
under L, the nonempty set 

F n f i F  = K K o i i K  

is also invariant under L. 
By Brouwer's well-known theorem, L has a fixed point p in Fo 0 F. Then p and 

x;'~ are the endpoints of an affine diameter of K, each point of which is fixed 
under L. 

For the translated convex body K - p, n E bd(K - p); therefore, by Theorem 1, 
the face of K - p of smallest dimension containing the origin is invariant under 
L. Hence, 

L(@ + p)  = L ( @ )  + L ( p )  = L a ( @ )  + p C @ + p, 

and the face Fl = @ + p of K is invariant under L. Analogously, the face Fz of K 
of srndksi dimension containing is invariant x d e r  t. 

it remains to he shown that affFl and affF2 art. disjoint. Suppcise. i>n the con- 
trary, that 2 i+ aff Fl i-I aif &. 

Consider the hyperplane HI such that Fl = K 1-1 H I .  Rut either z ff H or z $ A,' H :  
say 7 $ !!~ Thus, H; f H .  I .c! H* he a hq~erplane inc!:;ding Hl n H .  supporting K ,  
and different from HI and H. Then the face H* i l  K  contains y and is strictly 
included in F,. Indeed, Fl c H* n K would imply affFl c H ?  contradicting z 4 H .  
Thus 

dim H *  n K < dim FI , 

which contradicts the smallest dimension of Fl as a face of K containing p. 

Note that if Fl and Ft are invariant faces of K (such faces exist according to 
Theorem 2), pl E Fl, p2 c Fz, then for all fixed points f E K of L, the sections 

(affFI + aff Fz + f - pl - p2) n K 

are invariant under L. The section ah in Figure 3 is such an invariant section. Note 
that in general for fixed points f E K, UfEK(affF1 + affFz f -pl - p2) # K ;  for 
instance this is the case when Fl = {pl) and Fz = {p2). 

3. INVARIANT HYPERPLANES 

Throughout this section K c R~ will be a convex body, not containing the ori- 
gin 0. At the beginning of the proof of Theorem 2 we defined the greatest lower 
homothetic copy KO associated with the given convex body K c R ~ .  The separating 
hyperplane of K and KO is in general not unique; see e.g. the case of Figure I. How- 
ever, if K is a smooth convex body then there is only one separating hyperplane H. 
In Klee [7], it has been shown that most (in the sense of Baire categories) convex 
bodies are smooth. Therefcre, the restrictlm ?a smooth convex bodies is J ill~tifi,=.1 -"------ 
With the assumption of the uniqueness of H, we are able to establish the invariance 
of a subspace of codimension 1 under any map from r(K).  Let L E T(K) again. 

THEOREM 3 If there is a unique hyperplane H separating int K from int KO, then H 
is invariant under L. 
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INVARIANCE OF CONVEX SETS 

Proof In the proof of Theorem 2 a fixed point p t K n KO of L is found. Clearly, 
p E H. Suppose La @ H for some a E H .  Let H ,  be the open halfspace determined 
by H and containing intK, and H- the one containing intKo. Then La belongs to 
either H+ or to H-,  say, i u  t 3,. Theii L ( 2 p  - I ;) t and ir, a who!e neighhor- 
hood of 2p - a every point is mapped into H-, so take h E Ht in such a neigh- 
borhood. Then L(Xb + (1 - X)p) E H-,  and therefore Xb $ K,  for any X > 0. This 
implies the existence of a supporting hyperplane H' at p which contains b or sepa- 
rates h from intK. it follows that H' # H ,  which contradicts the hypothesis. 

COROLLARY 1 If either K or KO is smooth at all points of K n KO, then the support- 
ing hyperplane H of K or KO, respectively, at any point of K n KO is invarianl under 
L. Moreover, the section H' n K,  for any hyperplane H' parallel to H and meeting K ,  
is invariant under L. 

Proof The proof of the first part of the corollary follows directly from Theorem 
3, because the separating hyperplane H of intK and intKo is unique and supports 
both K and KO in each point of K n KO. To prove the second statement of the 
theorem, take any x' E H '  n K.  Then x' = x + f with f a fixed point under L in K 
and x E H. Clearly, Lx' = L(x + f )  = Lx + Lf = Lx + f t H'. 

!i simplex is said to bc in gen~rrrl pnririon if each proper subset of its vertices is 
linearly independent. 

THEOREM 4 Suppose K c R~ is a simplex in general position with 0 @ K and L t 
.rr(K). Then there exists a unique hyperplane that separates intK from intKo (and is 
therefore invariant under L). 
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42 G. SIERKSMA. V. SOLTAN AND T. ZAMFIRESC'U 

Proof Consider the rays with endpoints at O through the vertices of K.  Bccause 
of the general position of K ,  there is a unique Radon partition of these rays, i.e. a 
partltmn { Li,  Li j ,  with 

conwj Ll r! ronv: : L7 = 1: 

where I is a ray with endpoint 0. Detine 

Clearly, 

V1 U Vz = vert K 

and 

conv I.'! fi conv 1.; = 0. 

Cieariy, the hycrpiar~e 

H = aff(V, U XoV2) 

sepratcs  int K!! from int K .  The uniauencss o f  H follows directly frcm the fact that 

conv ii conv(Ao C'?) c H' 

for any hyperplane H' separating intKo from intK. By Theorem 3, H is invariant 
under L. 

- 
For eacn nyperpiane H separating intK and iniKo, ihert can be constructed a 

linear transformation L that leaves K invariant: Some point p K n KO n H has 
to  be a fixed point of L. Hence, L has to have eigenvalue 1 with elgenvectnr p. 
Suppose L maps each point of K into the direction of the line 2 through O and 
p with a factor a (0 < tr < 1) and parallel to H; i.e. for each x t H, Lx = a x  + 
( I  tr)p. H is left invariant by L if t r  is taken as eigenvalue of L with algebraic 
multiplicity d - 1 and with corresponding eigenspace E the d - 1 dimensional linear 
subspace parallel to H. 

Each linear transformation with eigenvalues i and tu  with 0 < u < i and 
corresponding eigenspaces the line I and the hyperplane E, leaves K invariant. 
Moreover, such L's leave H invariant (see Theorem 3), and keep each point of I 
fixed. 
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INVARIANCE OF CONVEX SETS 

4. LINEAR MAPS FROM A CONVEX SET INTO ANOTHER ONE 

The following lemma is easy but useful. The proof is left to the reader. 

LEMMA 1 I f  X, Y C Fld are linear .subspaces (convex sets, convex cones). thaz x ( X ,  Y )  
is a linear subspace (convex set, convex cone, ~e.yective&) in H~ xd .  

Let M be any closed convex set in R ~ .  It is well-known that M can be represented 
as a direct sum M = N 13 Q, where N is a linear subspace and Q is a line-free closed 
convex set. Note that N is uniquely determined in this representation, while Q is 
not. Observe that N is a maximal subspace of Fld with the property that M + N = 
M. It is also known (see [6] and [8]) that a line-free closed convex set Q c R~ can 
be represented as 

Q = conv(ext Q u extr Q). 

For any extreme ray / of Q, consider tht: ray r(i) - ; - c;, whcrc E is rhc endpoint 
d I .  Then 

KP = conv[G{,r(l) I E extrQj7 

is the characterist~c (recession! cunz of Qi and 

We return to the representation of M as a direct sum, namely 

= KM + conv(ext Q). 

Let M I ,  M2 be closed convex sets in R", and 

M:! = N2 fi Q:! = KM2 + conv(ext Q2) 

be their representations. 

THEOREM 5 (Representation theorem) In ftd, let Mi be a closed convex set, Ni a 
linear subspace and Qi a line-free closed convex sez such that Mi = N, @ Qi (i = 1,2). 
Then the following holds. 

For a proof, the following lemma is needed. 

LEMMA 2 For Mi and Ni defined as in Theorem 5 (i = 1,2), the following holds. 
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44 G.  STERKSMA. V. SOLTAN AND T. ZAMFIRESCU 

Proof Take any A E 7r(M1,M2) and suppose to the contrary that A $ w(Nl ,  N2), 
i.e. ANl  g N2.  This implies that there is an x E Nl such that Ax @ N2. Obviously, 
x # O. Let q c Q l .  As M1 = Nl @ Q l ,  it follows that s + q t M I .  On the other hand, 
A ( x  + q) = Ax + Aq @ Mz.  because Ax I$ Nz and N2 is uniquely determined in 
M2 = Nr D Q2. Hence, A @ x ( M l ,  M2) ,  which 1s a cnntradiction. Therefore, A E 

w(N1, N2). 
The inclusion x ( M l ,  M2)  L ~(k',,,,, KLITL) can he proved similarly. by taking rays 

instead of lines. rn 
Proof of Theorem 5 Since Ql c M I ,  we have .rr(Ml, M2)  c n(Q1,  M2) .  This to- 

gether with Lemma 2 implies that 

Take any A E w( Nl, N 2 )  n w(Q1, Mz)  and choose any point x t M I .  
Because MI = Nl I F  Q l .  there are points y E Nl and z E Q 1  such that x = y + z. 

Henre. 
A x  = A(! t ,-j = .4y + '4,- c Xi + Q; = M2,  

The sccond equality is verified analogously. It remains to prove the third one. By 
the second equality, 

T ( Q ~ , M ~ )  = .(Ka,.KiYiZ) n w(extQl ,M2) .  

Hence, using the first one, 

r(M1.M2) = T ( N I . N Z )  n x(Qi,M2) 

= ~(11'1 , N 2 )  r? w(KQ!,  K M 2 )  r? w(ext Q1,  M 2 ) .  

This proves the theorem. 

5. POLYHEDRAL SETS OF LINEAR MAPS 

The following question is raised in [lo]: 
Is the set w ( X )  a convexpolytope in case X is a convex polytope in Ftd with l inX = 

R ~ ?  
It will be shown here that this question has an affirmative answer. We first treat 

the polyhedral case. Let P be any polyhedral set in R ~ .  Then P can be represented 
as P = N 3 Q where N is a linear subspace and Q is a line-free polyhedral set. 
Furthermore, 

Q = conv(ext Q )  + KQ, 
where KQ is a polyhedral cone pointed in 0. Moreover, 

P = N @ Q = ( N  0 K p )  + conv(ext Q )  = K p  + conv(ext Q ) ,  

where K p  = N $ KQ is a polyhedral cone and conv(ext Q) is a polytope. 
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INVARIANCE OF CONVEX SETS 45 

THEOREM 6 For any polyhedrul sets PI ,  Pz c R ~ ,  the set n(Plr P2) is pohhedral. 

Proof Claim 1: Fnr any line-free polyhedral cone Kl c W" and for any polyhe- 
dral cone K2 c fId, the set n(Kl, K?) is a polyhedral cone. 

Claim 2: For any finite set X c R~ and for any polyhedral set P c w", the set 
n(X, P) is polyhedral. 

The proof of Claim 1 can bc found in 191. The proof of Claim 2 is as follows. Let 
X = { x I  ,... , x , }  with xa = {xal ,..., x,d) for each cr = 1 ,..., r .  Moreover, let P be 
a polyhedral set in FId. represented by the closed halfspaces HI,. . .,Hm with 

for suitable real numbers hi,, ..., bid, and X i  ( 1  = l , . .  . ,nt).  Let A = { a i j )  t n ( X ,  Pj, 
i.e. A,Y c P. Hence i.4x1,. . . ,A w, / (: I.': and this is equivalent to 

for each i = I , . .  . ,m and a = 1 ,..., r.  Each of these mr inequalities determines a 
closed halfspace Gi, c R ~ ~ ~ .  As 

it follows that in fact n(X,P) is polyhedral. This proves Claim 2. 
According to Theorem 5, we have 

with the usual notations. Lemma 1 implies that ?r(Nl,N2) is a linear subspace, 
Claim 1 implies that r(Ke,,Kp,) is a polyhedral cone, and Claim 2 implies that 
n(ext Ql, P2) is polyhedral. Hence, n(P1, P2) is in fact a polyhedral set. 

COROLLARY 2 For any polyhedral set P c R ~ ,  the set n(P) is polyhedral. 

We now turn our attention to polytopes. 

THEOREM 7 Let P c Fld be a polyhedral set. The set n(P) is a polytope if and only 
if P is a polytope with lin P = Fld. 

Proof Let P be a polyhedral set in f ld .  
Claim 1: Let X be a bounded set in Fld. Then the set n ( X )  is bounded if and 

only if linX = w ~ .  
The proof of Claim 1 is as follows. It is shown in [lo] that ?r(X) is bounded 

if linX = R ~ .  Suppose that linX f lld, and denote by S a linear subspace of W~ 
satisfying 

( l inX)+S=lId ,  and (l inX)nS={O).  
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36 G. SIERKSMA. V. SOLTAN AND T. ZAMFIRESCI: 

For any X > 0, define the linear transformation A* on Ftd by 

(B I N  denotes the restriction of the transformation B to the subspace N of R", and 
I I N  is the identity in N.) Obviously, A E r(X). Since the set { A x  I A > O )  is a ray, 
T(X) is unbounded. 

Claim 2: If a closed convex set M c FId is unbounded: then r ( M )  is also un- 
bounded. 

The proof of Claim 2 is as follows. Since M is unbounded, the characteristic cone 
K,tf of M is nontrivial, i.e. K,V # (0) (see for example [8], p. 64). Let 1 be any ray 
in KM with the apex 0. Then for any point x E M we have x + 1 c M. Choose any 
point el in I \{O) and let e:, . . .,ed be such that el, .. .,ed form a basis of I W ~ .  Define, 
for X 2 I, Bx : R' --, R~ by 

d fo reachx=(x l ,  ..., x d ) € W  . 
So, if x = ~ f = ~  xiei E M, then Bx(x) = (A - l)xlel + x E 1 + x C M. 
Hence, Bx E r(M). Since {Bx I A > 1) is a ray, the set T(M) is unbounded. This 

proves Claim 2. 
- Now suppose r (P)  is a polytope. By Claim 1, linP = Rd and, by Claim 2, the 
poljihebial set P must be bounded, LC. P miis: be a pulylupe. 

Conversely, let P be a polytope with iin P = R ~ .  By Theorem 6, r (P)  is a polyhe- 
dral set. According to Claim 1, r(P) is bounded, i.e. r (P )  is a polytope. 

COROLLARY 3 For any polytope P in FId with linP f R$ T(P) i.~ an unbounded 
polyhedral set. 

Proof Let P be any polytope in f ld with linP f Rd.  Then, trivially, P is polyhe- 
dral, and therefore Corollary 2 implies that r (P )  is polyhedral as well. Theorem 7 
implies that r (P )  has to be unbounded. 

Let K1 be the unit ball in Fld. It is easily seen that r(K1) is the unit ball in FIdxd. 
On the other hand, consider 

From Theorem 2 and Corollary 1, it follows that r(K7) is a line segment in R ~ ~ ~ .  
Hence, for a nonpolyhedral convex body K c R ~ ,  the set r (K)  may be polyhedral 

or not. 

OPEN PROBLEM. Characterize the closed convex sets M c fld for which the set 
s ( M )  is (i) polyhedral, (ii) polytopal. 
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