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This paper deals with the space m(X , X ) of all linear transformations L thal leave convex sets invariant;
for convex sets X and ¥ in RY, 7(X,Y) = {L|LX CY}.If (X =Y =)K is a convex body then faces
of K invariant under L are determined in casc 0 ¢ int K. Morcover, invariant supporting hyperplanes of
K are determined in case K is a simplex in general position. It is shown that w(Py,P;) is polyhedral if
P; and P, are polyhedral. Finally, it is shown that for any polyhedral set P, w(P,P) is a polytope iff P

is a polytope with linP = R9.

1. INTRODUCTION

Operators which leave invariant a cone in infinite-dimensional spaces have been
studied extensively, especially in the context of gencralizations of the Perron-Froben-
ius Theorem; see e.g. Barker, Schneider [2]. In Berman, Plemmons [3] nonnegative
matrices of order n are studied as operators that map the nonnegative othant in R
onto itself. In Adin [1] cone-preserving operators between d-dimensional polyhedral
cones are investigated; using Gale diagrams, the extreme cone-preserving operators
are determined in case the cone has either d + 1 or d + 2 extreme rays. In Elsner
[5], spectral properties are determined for real square matrices that leave invariant
a nontrivial convex set. In Sierksma, De Vos [10], the extreme simplex-preserving
operators are determined.

In this paper we focus on convex sets and polytopes in RY.

For any sets X,Y C R, we denote by m(X,Y) the family of all linear transfor-
mations L from R? into R? such that LX C Y. If X =Y, we write m(X) instead of
7(X,X) and say that X is invariant under L.

In this paper we consider linear transformations that leave convex sets invariant.
In Section 2 we consider invariant faces, and in Section 3 invariant hyperplanes. In

*The research for this paper was done during V. Soltan’s stay and T. Zamfirescu’s visiting professorship
at the University of Groningen in 1990.
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Section 4 a representation of m(M;, M) is given in case M, and M, are closed con-
vex sets and this is used in Section 5 to prove, among others, that w(P) is polytopal
iff P is polytopal with lin P = RY.

A compact convex set with nonempty interior is called a convex hody. A convex
set is called polvhedral if it is the intersection of finitely many closed halfspaces. A
bounded polyhedral set is called polytopal (or a polytope).

For any set X C RY, convX denotes the convex hull, aff X the affine hull and
linX the linear hull of X. For a closed convex set M C RY, dimM denotes the
dimension, intM the interior, rint M the relative interior, bd M the boundary, ext M
the set of extreme points, and extr M the set of extreme rays of M; the intersection
of M with a supporting hyperplane is called a face of M.

2. INVARIANT FACES

Throughout, K < R is a convex hody (d >> 2} and 1. C 7(K). In the following two
theorems, invariant faces of A are determined for the cases 0 € bdR and O¢ K.
The case that 0 € intK is not studied in this paper

THEOREM 1 If 0 ¢ bdK, then the face of K of smallest dimension containing O is
invariant under L.

Proof Let F be the face of K of smallest dimension with 0 € F. Let &k =dimF
and consider the linear subspace G generated by F.

Clearly, if £ = 0 then F = {0} is invariant. So, assume k > 1. Let H be a hyper-
plane such that F = K N H. Suppose there is a point b€ F such that Lb¢ H. Let
b* cintK. Denote by I, and ¥_ the two halfspaccs bounded by H such that b~,
Lbe Hy. From L{—b) € H_ it follows that

LAb)+(1=A)(=b))e H_
for A > 0 small enough. Consider such a A and detine
cx =AY+ (1 - A)(-Db).

For any p with 0 < p <1 there is a hyperplane separating K from puc,, because
L(ucy) € H- yields pcx ¢ K. Thus (by taking p — 0) there is a supporting hy-
perplane H' at 0 with ¢y € H' or separating c, from intK. Since c) € H+, we
have H' # H. Assume H' D G. Because —b € G, either both b* and c) lie on the
same side of H', or both belong to H'. The first case contradicts the fact that H'
contains ¢, or separates it from intK. The second contradicts b* € intK. Hence,
dimG N H' < k. Consider now any hyperplane H* including H N H', distinct from
both H, H', and supporting K. Clearly,

H*NK=HnNnH'NK=FnNnH CGNH',

whence dimH* N K <dimG N H' < k, which contradicts the assumption that F has
smallest dimension.
Hence, for any point be F, Lb€ HNK = F. So, F is an invariant face. |
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FIGURE 1.

The following example shows that faces of K that are not of smallest dimension,
need not be invariant under L. Let K be the triangle with vertices (0,0}, (2,0), (0,2).

Then D
\

20N

2\1 1/

projects all points of the triangle on the line through (0,0) and (1, 1). Clearly, the
tace ((0,0),(2,0)) is not invariant under 7.

In the following theorem the concept of an affine diameter is used; it is a chord of
a convex body such that there exist distinct parallel supporting hyperplanes through
both endpoints of the chord.

For each K not containing the origin the greatest lower homothetic copy (glh-
copy) Ko of K is defined by

Ko = MK

with
Ao = Iinf{A [ AK N K # 0};
see Figure 1.

THEOREM 2 Let 0 ¢ K. Then K has an affine diameter (collinear with 0) such that
each point of it is fixed under L. Moreover there exist two faces Fy and F, of K with
aff F; Naff F>, = @, each invariant under L.

Proof let0¢ K and let K, be the glh-copy of K. Clearly, Ky and K meet, but
intKynintK = @. Consider a hyperplane H separating intK, from intK and the
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faces Fy = Ko H of Ky and F = KN H of K. Since both K and K are invariant
under L, the nonempty set
FonnF =Ko K

is also invariant under L.

By Brouwer’s well-known theorem, L has a fixed point p in Fy "V F. Then p and
Ay 'p are the endpoints of an affine diameter of K, each point of which is fixed
under L.

For the translated convex body K — p, 0 € bd(K — p); therefore, by Theorem 1,
the face ® of K — p of smallest dimension containing the origin is invariant under
L. Hence,

L(®+p)=L(®)+ L(p)=L(®)+pC®+p,

and the face F; = ® + p of K is invariant under L. Analogously, the face F; of K
of smallest dimension containing ,\O“lp is invariant under L.

It remains to be shown that aff F; and aff /> are disjoint. Suppose, on the con-
trary, that z < aff Fy maff F>.

Consider the hyperplane H, such that F; = KW H,. Buteither z¢ Hor z ¢ Ay iH,
say z ¢ I1. Thus, H; # H. l.et H* be a hyperplane including H; N H. supporting K,
and different from Hy and H. Then the face H* K contains p and is strictly
included in Fy. Indeed, F; ¢ H* N K would imply aff F; C H, contradicting z ¢ H.
Thus

dimH*NK < dim#Fi,

which contradicts the smallest dimension of F; as a face of K containing p. |

Note that if F; and F; are invariant faces of K (such faces exist according to
Theorem 2), p; € Fi, p2 € F>, then for all fixed points f € K of L, the sections

(aft'Fl +aftF +f - P1 - p2) NK

are invariant under L. The section ab in Figure 2 is such an invariant section. Note
that in general for fixed points f € K, Uy (affFy +aftF; f—p1—p2) #K; for
instance this is the case when F; = {p;} and F;, = {p>}.

3. INVARIANT HYPERPLANES

Throughout this section K C RY will be a convex body, not containing the ori-
gin 0. At the beginning of the proof of Theorem 2 we defined the greatest lower
homothetic copy Ky associated with the given convex body K C R?. The separating
hyperplane of K and Kj is in general not unique; see e.g. the case of Figure 1. How-
ever, if K is a smooth convex body then there is only one separating hyperplane H.
In Klee [7], it has been shown that most (in the sense of Bdire categories) convex
bodies are smooth. Therefore, the restriction to smooth convex bodies is justified.
With the assumption of the uniqueness of H, we are able to establish the invariance
of a subspace of codimension 1 under any map from 7(K). Let L € m(K') again.

THEOREM 3  If there is a unique hyperplane H separating intK from intKy, then H
is invariant under L.
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Proof In the proof of Theorem 2 a fixed point p € K 1 Ky of L is found. Clearly,
p e H.Suppose La ¢ H for some a € H. Let H, be the open haifspace determined
by H and containing intK, and H_ the one containing intKy. Then La belongs to
either Hy or to H_, say, La € H,. Then L(2p —«) < H_ and in a whole neighbor-
hood of 2p —a every point is mapped nto H_, so take b€ H, in such a neigh-
borhood. Then L(Ab+ (1—-A)p) € H_, and therefore Ab ¢ K, for any A > 0. This
implies the existence of a supporting hyperplane A’ at p which contains b or sepa-
rates b from intK. It follows that A’ # H, which contradicts the hypothesis. |

COROLLARY 1 [f either K or Ky is smooth at all points of K 0\ Ky, then the support-
ing hyperplane H of K or K, respectively, at any point of K N\ Ky is invariant under
L. Moreover, the section H' N\ K, for any hyperplane H' parallel to H and meeting K,
is invariant under L.

Proof The proof of the first part of the corollary follows directly from Theorem
3, because the separating hyperplane H of intK and intKj is unique and supports
both K and K, in each point of K N Ky. To prove the second statement of the
theorem, take any x' € H' N K. Then x' = x + [ with [ a fixed point under L in K
and x € H. Clearly, Lx' = L(x+ f)=Lx+ Lf =Lx+ f € H'. |

A simplex is said to be in general position if each proper subset of its vertices is
linearly independent.

THEOREM 4 Suppose K C R? is a simplex in general position with 0¢ K and L ¢
w(K'). Then there exists a unique hyperplane that separates intK from intKy (and is
therefore invariant under L).



09:43 4 June 201

[ German National Licence 2007] At:

Downl oaded By:

42 G. SIERKSMA. V. SOLTAN AND T. ZAMFIRESCU

Proof Consider the rays with endpoints at 0 through the vertices of K. Because
of the general position of K, there is a unique Radon parttion of these rays, i.e. a
partition {L1, L7}, with

convi Lyiconvii L, =1,
where [ is a ray with endpoint (. Define
Vi = (ULj)nvertK (i =12).

Clearly,
Viuls =vertK

and

convViNeonvbs = Q.

Of course a; # a; and we may assume that gy < lasii. Now it s easily checked
that

i

Ao = lar]i - [laz]]

and that

Ciearly, the hyerpiane
H = aff(V; UApls)

separates int Ky from int K. The unigueness of H follows directly from the fact that
convVy Uconv(Agla) C H'

for any hyperplane H' separating int Ky from int K. By Theorem 3, H is invariant
under L. |

For each hyperplane f separating intK and intKy, therc can be constructed a
linear transformation L that leaves K invariant: Some point p € KN KoNH has
to be a fixed point of L. Hence, L has to have eigenvalue 1 with eigenvector p.
Suppose L maps each point of K into the direction of the line / through 0 and
p with a factor o (0 <« < 1) and parallel to H; i.e. for each x C H, Lx = ax +
(1 a)p. H is left invariant by L if « is taken as eigenvalue of L with algebraic
multiplicity d — 1 and with corresponding eigenspace E the d — 1 dimensional linear
subspace parallel to H.

Each linear transformation [ with eigenvalues 1 and « with 0 < w <1 and
corresponding eigenspaces the line / and the hyperpiane E, leaves K invariant.
Moreover, such L’s leave H invariant (see Theorem 3), and keep each point of /
fixed.
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4. LINEAR MAPS FROM A CONVEX SET INTO ANOTHER ONE
The following lemma is easy but useful. The proof is left to the reader.

LEMMA 1 IfX,Y C RY are linear subspaces (convex sets, convex cones), then m( X.Y)
is a linear subspace (convex sel, convex cone, respectively) in R4,

Let M be any closed convex set in RY. It is well-known that M can be represented
as a direct sum M = N = Q, where N is a linear subspace and Q is a line-free closed
convex set. Note that N is uniquely determined in this representation, while Q is
not. Observe that N is a maximal subspace of RY with the property that M + N =
M. It is also known (see [6] and [8]) that a line-free closed convex set Q C RY can

be represented as
Q = conv(extQ Uextr Q).

For any extreme ray / of , consider the 1ay ¢{({) — { —¢, where € is thc endpoint
Y y \¢)

of /. Then

Ko = conviudr(/) i cexirt]
is the characteristc (recession) cone of @, and
O = conv(extQ) + Kg.
We return to the representation of M as a direct sum, namely

M=N&Q=Na®(conv(extQ)+ Kg) = (N & Kp) + conv(ext Q)
= Ky + conv(extQ).
Let My, M, be closed convex sets in H’], and
M; = N; & Q1 = K, + conv(ext Qy),
My = N> Oy = K, + conv(extQs)

be their representations.

THEOREM 5 (Representation theorem) In Rd, let M; be a closed convex set, N; a
linear subspace and Q; a line-free closed convex set such that M; = N; ® Q; (i = 1,2).

Then the following holds.
(M1, My) = ©(Ny, N2) N m(Q1, M?)

= W(KM”KMZ) N 7r(extQ1,M2)
= (N1, N)N (Ko, Kum,) N (ext 01, M>).

For a proof, the following lemma is needed.

LEMMA 2 For M; and N; defined as in Theorem 5 (i = 1,2), the following holds.
7F(M1,M2) C 7T(N1,N2)ﬂ7r(KM1,KMZ).
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Proof Take any A € m(M;,M;) and suppose to the contrary that A ¢ m(Ny, N2),
i.e. AN; ¢ N,. This implies that there is an x € N; such that Ax ¢ N,. Obviously,
x # 0. Let g € Q1. As M; = Ni & Qy, it follows that x + g € M. On the other hand,
A(x +q) = Ax + Aqg ¢ M,, because Ax ¢ N; and N is uniquely determined in
M, = N, @ Q>. Hence, A ¢ n(Mi,M>), which is a contradiction. Therefore, A €

7T(N1,N2).
The inclusion m(M;, M) C m(Kyy,,Kpr,) can be proved similarly. by taking rays
instead of lines. n

Proof of Theorem 5 Since Q1 C M;, we have (M, M;) C m(Q1,M>). This to-
gether with Lemma 2 implies that

m(M1,My)C 7 N1, N2) N w(Q1, M>).

Take any A4 € (N, N2)nm(Q1,M>) and choose any point x € M;.
Because M, = Nj » Q4, there are points y € Ny and z € Q; such that x =y + z.
Hence,
Ax=A(y t z)= Ay + Az CN; + 07 = M3,
so that 4 € 7{M;, M), and therefore we have in fact that

m(Mi,M2) = (N, N2) N TF(Ql,Mz).

The sccond equality is verified analogously. It remains to prove the third one. By
the second equality,

7{(Q1,M2) = m(Kp,, Kn,) N w(ext Q1, Mz).
Hence, using the first one,
T(My.M>) = T(N1,N2) N 7(Q1, M?)
=71(N,,N))Nm(Kg,,Kn,) N (extQr, M>).

This proves the theorem. |

5. POLYHEDRAL SETS OF LINEAR MAPS

The following question is raised in [10]:

Is the set m(X ) a convex polytope in case X is a convex polytope in R? with linX =
R*?

It will be shown here that this question has an affirmative answer. We first treat
the polyhedral case. Let P be any polyhedral set in RY. Then P can be represented
as P =N @ Q where N is a linear subspace and Q is a line-free polyhedral set.

Furthermore,
Q = conv(extQ) + Ko,

where K, is a polyhedral cone pointed in 0. Moreover,
P=N®Q =(NO®Kp)+ conv(extQ) = Kp + conv(extQ),
where Kp = N @ Ko is a polyhedral cone and conv(extQ) is a polytope.
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THEOREM 6 For any polyhedral sets Py, P> C Rd, the set w(Py,P») is polyhedral.

Proof Claim 1: For any line-free polyhedral cone K C K¢ and for any polyhe-
dral cone K> C Rd, the set (K1, K?>) is a polyhedral cone.

Claim 2: For any finite set X C RY and for any polyhedral set P C R, the set
7(X,P) is polyhedral.

The proof of Claim 1 can be found in [9]. The proof of Claim 2 is as follows. Let
X = {x1,...,%n} With x4 = {Xq1,---,Xaa) fOr each a = 1,...,r. Moreover, let P be

a polyhedral set in RY, represented by the closed halfspaces Hi,...,H, with

d
H; = J Z4,...,22) € Rd‘Zh,,‘z;- <A
| =
for suitable real numbers bi1,...,bjq, and A; (¢ = 1,...,m). Let A= {aij} € 7(X, P),
ie. AX ¢ P. Hence {Ax;, .., Ax,} < P, and this is equivalent to
d
N bija e < A
ya PR
jk=1
for each i = 1,...,m and a = 1,...,r. Each of these mr inequalities determines a
closed haltspace Giqo C R4, As

m r
W(er)'—_ ﬂ ﬂ Gi(n
i=1a=1

it follows that 1n fact 7(X,P) is polyhedral. This proves Claim 2.
According to Theorem 5, we have

’IT(P],PQ) = 71'(:1\/71_.1\[2) N ﬂ(KQ!,sz)ﬂ H(CXth,Pz),

with the usual notations. Lemma 1 implies that m(Ni,Nz) is a linear subspace,
Claim 1 implies that m(Kg,,Kp,) is a polyhedral cone, and Claim 2 implies that
m(extQy, P2) is polyhedral. Hence, n(Py, Py) is in fact a polyhedral set.

COROLLARY 2 For any polyhedral set P C R4, the set w(P) is polyhedral.

We now turn our attention to polytopes.

THEOREM 7 Let P C R be a polyhedral set. The set w(P) is a polytope if and only
if P is a polytope with lin P = Re.

Proof Let P be a polyhedral set in RY.

Claim 1: Let X be a bounded set in R%. Then the set m(X) is bounded if and
only if linX = RY.

The proof of Claim 1 is as follows. It is shown in [10] that w(X) is bounded
if lin X = R%. Suppose that linX # R? and denote by S a linear subspace of Rr?
satisfying

(linX)+S=RY and (linX)nS = {0}.
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For any A > 0, define the linear transformation 4, on R4 by

Axlinx =1 llinx, and Axls= Al s;

(B |y denotes the restriction of the transtormation B to the subspace N of R, and
I | is the identity in N.) Obviously, A € m(X). Since the set {4, | A > 0} is a ray,
m(X') is unbounded.

Claim 2: If a closed convex set M R is unbounded, then 7(M) is also un-
bounded.

The proof of Claim 2 is as follows. Since M is unbounded, the characteristic cone
K of M is nontrivial, i.e. Ky # {0} (see for example [8], p. 64). Let [ be any ray
in Ky with the apex 0. Then for any point x € M we have x + ! C M. Choose any
point e; in /\{0} and let es,...,e4 be such that ey,...,e; form a basis of RY. Detine,
for A> 1, By : R* = R“ by

/d \ d

\ T . .
Nhe -y Drer+ Y xe - (A—Txe, + v
=i 7 =1

B.{x)= B,

S

P

for each x = (xy,...,x4) € RY.

So, if x = Z;jzlxiei € M, then By(x)=(A-Dxier +xel+xCM.

Hence, By € m(M). Since {Bx | A > 1} is a ray, the set m(M) is unbounded. This
proves Claim 2.

Now suppose 7(P) is a polytope. By Claim 1, linP = RY and, by Claim 2, the
polyhedral set P must be bounded, i.e. P must be a polytope.

Conversely, let P be a polytope with lin P = R. By Theorem 6, m(P) is a polyhe-
dral set. According to Claim 1, #(P) is bounded, i.e. w(P) is a polytope.

COROLLARY 3 For any polytope P in RY with linP # RY, m(P) is an unbounded
polyhedral set.

Proof Let P be any polytope in R? with lin P # R?. Then, trivially, P is polyhe-
dral, and therefore Corollary 2 implies that m(P) is polyhedral as well. Theorem 7
implies that m(P) has to be unbounded. |

Let K be the unit ball in R, It is easily seen that 7(K,) is the unit ball in RI*d,
On the other hand, consider

Ky ={(x,y)eR*|(x~2)’ +y* <1},
From Theorem 2 and Corollary 1, it follows that 7(K>) is a line segment in R>2,
Hence, for a nonpolyhedral convex body K C RY, the set 7(K) may be polyhedral
or not.

OPEN PROBLEM. Characterize the closed convex sets M C R? for which the set
m(M) is (i) polyhedral, (ii) polytopal.



09: 43 4 June 201(

[ German National Licence 2007] At:

Downl oaded By:

INVARIANCE OF CONVEX SETS 47

References

1

2

10.

. R. Adin, Extreme positive operators on minimal and almost minimal cones, Linear Algebra Appl. 44
(1982), 61-86.

- G. P. Barker and H. Schneider, Algebraic Perron-Frobenius theory, Linear Algebra Appl. 11 (1975),
219-233.

. A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical scicnces, Academic Press,
New York, 1979.

. J. Eckhoff, Radon’s theorem revisited, Contibutions 1o geomctry, Proc. Geom. Symp. Siegen 1978,

J. Télkc and J. M. Wills, Ed., 1979, 164-185.

. L. Elsner, On matrices leaving invariant a nontriviai convex sel, Linear Algebra Appl. 42 (1982),

103-107.

. V. Klee, Extremal structure of convex sets, Arch. Math. 8 (1957), 234-240.
. V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139

(1959), 51-63.

. R. T. Rockafellar, Convex Analysis, Princeton, 1970.
. H. Schneider and M. Vidyasagar, Cross-positive matrices, SLAM J. Numer. Math. 7 (1970}, 508-519.

G. Sierksma and K. dc Vos, Convex polytopes ds maurix invariams, Compositio Muth. 52 (1984),
203-210.



