
Math. Z. 213, 387-392 (1993) 
Mathematische 

Zeitschrift 
�9 Springer-Verlag 1993 

A generic view on the theorems 
of Brouwer and Schauder 

Tudor Zamfirescu 
Fachbereich Mathematik, Universitfit Dortmund, W-4600 Dortmund, Germany 

Received 28 June 1991; in final form 22 July 1992 

Several generic fixed point theorems have been established by De Blasi [5, 6], 
Myjak [9], De Blasi and Myjak [7], Myjak and Sampalmieri [101, Butler [4], 
Dominguez Benavides [8], Vidossich [121, to quote just a few. However it seems 
that the well-known and important theorem of Schauder [11] and its finite- 
dimensional version, Brouwer's theorem [31, have not yet been generically investi- 
gated. We now fill this gap. 

For a survey of generic results on convex bodies in Euclidean spaces, see [15]. 

A large set of fixed points 
Let E be a Banach space and consider a compact convex set K c E with more than 
one point. By the Schauder theorem, every continuous function f :  K ~ K has at 
least one fixed point. We shall show here that, in the sense of Baire categories, most 
continuous functions have uncountably many fixed points. More precisely, the set 
of all their fixed points is homeomorphic to the Cantor set. This sharply contrasts 
with the generic finiteness of the fixed point set found by De Blasi [6] in another 
space of functions and with the behaviour of the non-expansive mappings which 
have, generically, a single fixed point ([12], see also [9, p. 29]). Of course, the space 
~g(K) of all continuous functions f :  K -~ K, equipped with the metric of uniform 
convergence, is complete, hence a Baire space. "Most" means "all, except those in 
a first category set" (so, a property is generic if it is shared by most elements). 

F o r f ~  Cg(K), let Ff be the set of all fixed points o f f  For x ~ E, B(x,  r) denotes the 
open ball of centre x and radius r. 

The proof of Theorem A below will make use of the following recent result. 

Lemma. Let  C be a convex closed set in E, f:  C ~ C be a map with f (C)  compact and 
> 0 be ffiven. Then there exists a map g: C ~ C  such that F o is f inite and 

IIf - 9 II < ~. 

This result was attributed in [21 to Brown and extended to finite unions of convex 
sets by Baillon and Rallis [21. 

Theorem A. For most functions in T ( K )  the set o f f ixed  points is homeomorphic to the 
Cantor set. 
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Proof. Clearly, F: is closed for any f ~  Cs Thus we only have to show that, for 
most feCg(K), F: has no isolated point and is totally disconnected. We first prove 
that F: has no isolated point. Let cg, be the set of all functionsf~Cg(K) admitting 
a fixed point  y ~ K such that 

Ff c3 B(y, n-  1) = {y} (n ~ N ) .  

Clearly, S cg, is precisely the set of a l l f e  Cg(K) admitting isolated fixed points, so it 
suffices to prove that oK, is nowhere dense, for arbi t rary n. 

Let C c Cg(K) be open and, if (9 n cg, 4= o, take f e  (9 ~ cg,. We shall find an 
open set in (9\c4,. 

F rom the covering {B(y, (2n)-1): yeF:}  of F: we select a finite subcovering 
{B(y, (2n)-a) :y  e y}. Clearly, for some v e (0, (2n)-1), if y and y' are distinct points 
of Y, then 

B(y, v) ~ B(y', v) = o .  

Let e ~(0, v) be such that If f -  g I1 < e implies # e (9. The set K being compact,  we 
can find a number  6e(0,  e/6) such that x , x ' e K  and [ r x - x ' [ I  < 46 imply 
I I / ( x ) - / ( x ' ) l l  < ~/3. 

Since L = K \ U y ~ r B ( y , ( 2 n ) - I  ) is compact  and disjoint from F: if it is 
nonempty,  for some co > 0 the inequality 11 f(x) - x 11 > co holds for any x ~ L. 

For  every point y e Y, consider a point zy~K and a number  ~ such that 
0 < c~ < co, if L # ~b, 

B(zy, 2~) c B(y, 6) and B(y, 2~) c~ B(zy, 2~) = o . 

We define a function f * :  K ~ K as follows: 

f*(x) = 

: f (x )  if x r Uy~r B(y, 4~), 

f ( y + ( 2 2 - 4 6 ) v )  if x = y + 2 v  and 2 6 < 2 < 4 6 ,  

y + ( 2 6 - 2 ) v  if x = y + 2 v  and ~ < 2 < 2 6 ,  

x i f x = y + 2 v ,  2cx=<2 < 6  

and x r B(zy, 2e), 

y + ( 2 2 - 2 c O v  i f x = y + 2 v  and e < 2 < 2 e ,  

y i f x = y + 2 v  and 0 < 2 < c ~ ,  

z y + ( 2 2 - 2 e ) v  if x = z y + 2 v  and e < 2 < 2 e ,  

~zy i f x = z y + 2 v  and 0 < 2 < c ~ ,  

where, each time, y is some point in Y and v is some unit vector. It is easily checked 
that  f *  is cont inuous and [t f *  - f [ [  < 2~/3. 

Thus, for every y~ Y, f*(B(y,  a) n K) = {y} and f*(B(zy, a) c~ K)  = {zy}. 
Therefore, for every function g~Cg(K) with [If* - gl[ < ~, 

g(B-~-y-~, ~) ~ K) = B(y, or) n K 

and 

g(B(zy, cO n K) c B(zy, ~) n K . 
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By Schauder 's  theorem, g has a fixed point  in each of the sets B(y,~) and 
B(zy, ~), where y~  Y. 

We investigate now the fixed points of g. Since ~ < co, g has no fixed points  in L. 
To any possibly existing fixed point  in K \ L  there is a point  y ~ Y at distance less 

than (2n)-1 and a pair  of fixed points, the one in B(y, ~) and the other in 
B(zy, ~). These three fixed points of g have pairwise distances less than n -  1, and the 
last two are certainly distinct. Therefore g ~ ~ , .  On the other hand g ~ (9 because 
I I f -  glJ < ~. Hence, for most  feCg(K),  F: has no isolated point. 

N o w  we show that  F: is totally disconnected for m o s t f ~  Cg(K). Let ~s be the set 
of all f unc t i ons f e  Cg(K) such that  F: has a componen t  of d iameter  at least n-1.  It  
suffices to prove that  cs is nowhere dense. 

Let C c ~ ( K )  be open. By the lemma,  there is s o m e f ~  (9 with finite F:. Let ~ be 
the min imum distance between distinct points in F:, or equal to 1 if F: consists of 
a single point. Let fl = min{~/3, (3n)-1 }. The set 

L' = K \  0 B(x, fl) 
xEF$ 

being compac t  and disjoint from F: (or empty),  for some co > 0 the inequality 
[] f(x) - x I1 _-> a) holds for all x ~ L'. 

Fo r  every function g~g(K) with [ I f -  g[] < co we have F0 c~ L' = o because 
[[ g(x) - x [[ >= [I f(x) - x [[ - [t f(x) - g(x)[I > 0 for all x ~ L'. So each componen t  of 
Fg lies in some open ball B(x, fl) with x ~ F: and therefore has a diameter  less than 
n-1.  This shows that  cg, is nowhere dense and the p roof  is finished. 

A small set of  fixed points 
Let now K c IR a be compact ,  convex and with nonempty  interior. By the well- 
known Brouwer  fixed point  theorem [3], for any f6Cg(K), the set F: of all fixed 
points o f f  is nonempty .  By Theorem A, for m o s t f e  Cg(K), F: is uncountable.  But, 
otherwise, how large is F: for most  f ?  In particular,  is it of positive measure? We 
answer here this question. 

As a mat te r  of notat ion,  for any sets A, B c ira and point  x e IRa, 

A(x ,A)=  infy~A[[x- y[[ and D(A,B)= infx~AA(x,B). 

Let M c IRa and x e M .  For  any ~ > 0, let 7~(x) be the radius of the largest open 

ball with centre in B(x, e) and disjoint from M. Then 

PM = infx~M lim s u p ~ o  7~(x)/e 

is called the porosity of M. The set M is called porous if Pu  > 0 and strongly porous 
i f p u  = 1. 

Let again M = IRa and x e M. For  any e > 0, let 6~(x) be the largest number  

r such that, for any closed halfspace H~x, there exists a point  y ~ B(x, ~) such that  
B(y, r) c H \M.  If z(x, M) = lim s u p ~ o  6,(x)/e then 

"cu = inf~M z(x, M) 

is called the total porosity of M, and M is said to be totally porous if zM > 0. The 
total porosi ty  was in t roduced (in metric spaces) by Agronsky  and Bruckner  [-1]. 

An excellent survey on porosi ty  is Zajicek's paper  1-13]. About  its applicat ions 
to Convexi ty  see [14]. 
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Theorem B. Most functions in off(K) admit a set of fixed points which is strongly and 
totally porous. 

Proof Let f~Cg(K), 0 < ct < 1 and 0 < fl < Zbdr(4 + zZdr) -1/2. If 
(*)gxelR d, u > O, 3yeB(x ,  e) s.t. B(y, eFlx - y[E) c~ F: = o 

then the porosi ty  of F: is at least e. If  

(**)VxelR d, Ve > 0, VH~x,  3ye-B(x, e) s.t. B(y, fllIx - yll) c H \ F :  

then the total porosi ty  of F: is at least ft. 
We prove  that  (*) and (**) hold for most  f e ~ ( K ) .  Let 

~ ,  = {f.' 3xs.t. VyeB(x ,  n~-), B(y, ctllx - yll) c~ F: 4: o} 

and 

~, = {f: 3x, 3H~xs. t .  Vy~B(x,  n -~ ,  B(y, flrlx - yll) r . 

We now show that  the complements  of ~ ,  and ~, are dense. 
Let (9 c Cs be open. Take  f e ( 9  and e > 0 such that  I l f - 9 I I  < e implies 

0 E (9. Let v e (0, e) be such that  x, x' e K and rl x - x'  Pl < v imply li f (x)  -- f(x')Jl < e. 
From the covering {B(y, v): y e F:} of F: select a finite subcovering {B(y, v): y e Y}. 
Let ( e (0 ,  D ( K \ L ,  F:)), where 

L = {xelRa:A(x, Y) < v} , 

and set 

L* = { x e L :  A(x, bd L) < ~} . 

For  ~ small enough, the projection (nearest point  mapping)  PbdL: L*--* bd L is 
single-valued and we assume ~ to be so small. Then b d ( L \ L * )  is a differentiable 
surface and Pbd L is continuous.  Let v be a unit vector and construct  

f (x)  if x ~ K \ L  

x + (1 -- ~-  1t1 x - -  P b d  L(X) II) (f(PK(Pbd L(X))) - -  Pbd L(X)) 
f*(x)  = if x ~ K  ~ L* 

x + min{e ,A(x ,L* w b d K ) } v  if x ~ K  c~ L \ L *  . 

It is easily checked that  f *  is continuous,  that  I l f - f *  II < e and that  the fixed 
points o f f *  form the set bd (K  c~ L\L*) ,  which is obviously strongly porous.  To  
verify the total  porosi ty of bd (K  c~ L \ L * )  we notice:. 

At every point  y e ( b d ( K  c~ L \ L * ) ) \ ( b d ( L \ L * ) ) ,  z ( y , F : , ) >  Tbd K. At every 
point  y 'E (bd(K c~ L\L*) ) \ (bdK) ,  z(y', F:,) = 2-1/2 (the total porosi ty of  a hyper- 
plane). At every point  y " e  (bd K)  c~ (hd(L\L*) ) ,  

~(y", f : . )  > rbdK(4 + ~dK)-l/2, 

because b d ( L \ L * )  behaves locally like a hyperplane,  and the addit ion of a hyper- 
plane to a set M decreases its total  porosi ty  to ZM(4 + Z2) - 1/2, at worst. Therefore 

ze:  > %a K(4 + Z2d r) -1/2  > f t .  

Hence f *  ~ ( 9 \ ( ~ ,  w fr This shows that  the complements  of f t ,  and if, are 
dense in if(K).  
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It is easily seen that both ~ ,  and fr are closed and therefore nowhere dense. 
Hence (*) and (**) hold for most  f~Cg(K). It follows that, for most  functions 
f, PF~ > ~ for any rational 7~(0, 1), and zr~ >/~, which means that Fy is strongly and 
totally porous. 
Theorem B and Lebesgue's density theorem imply the following. 

Corollary. For most functions in ~(K),  the set of f ixed points has (d-dimensional) 
measure zero. 

This corollary suggests that  the Hausdorff  dimension of F I might be lower than d. 
That it is indeed much lower is confirmed by the following result, in which K lives 
again in a Banach space E. I am indebted to David Preiss, who thought  of 
considering the Hausdorff  dimension. 

Theorem C. Most  functions in ~ ( K )  admit a set of  f ixed points which has Hausdorff 
dimension O. 

Proof Let M c E and ~ > 0. If, for any s > 0, there is a covering {Mi}7'= 1 of M with 
m 

diam Mi < e and ~ i=  1 (diam Mi) ~ < E, then the Hausdorff  dimension of M is at 
most ct. So, let 

m 
~ .  = {fe<g(K): if Ff ~ Ui=l Mi for some m then diam Mi ~ 1/n 

for some i or ~7=1 (diam M~) ~ >= I/n} . 

We prove that ~-,  is nowhere dense in ~(K).  Indeed, let C c Cg(K) be open. By the 
lemma in the preceding section, we may choose a function g e (9 with F o finite, say 
F 9 = {xl . . . . .  x~}. Obviously, for any fl~(0, min{(mn) -1/~, n- l} ) ,  we have fl < 
1/n and mf l '<  l/n, whence hq~o~, if F h c:7_ ~i"=lB(xi ,  fl/2) and this happens in 
a whole ne ighbourhood of 9. 

Hence m o s t f e  Cg(K) do not  belong to ~ = 1  f t ,  and have therefore Hausdorff  
dimension at most  ~. Since this is true for every rational c~ > 0, for m o s t f E ~ ( K )  the 
Hausdorff  dimension of F I is 0. 
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