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On the Curvatures of Convex Curves
of Constant Width (**).

In his paper [8] included in this volume and presented in 1992 at the
conference on Analisi Reale e Teoria della Misura on the marvellous is-
land of Capri, O. Stefani proved the following result.

THEOREM. If 2y is a diameter of a convex curve of constant width w
and if the radius of curvature ¢(x) at x exists, then 0 < o(x) < w, the
radius of curvature ¢(y) at y exists and g(x) + o(y) = w.

We shall establish here a refinement of this result, which gives the
exact relationship between the lower and upper curvatures at opposite
points of an arbitrary planar convex body of eonstant width. Qur result
obviously implies the above theorem. Furthermore we shall describe
the generic aspect of planar convex bodies of constant width with re-
spect to their curvatures.

Let ¢ (¢) and ¢, («) denote the right lower and upper radius of cur-
vature of the convex curve of constant width C, at the point x € C; let
i (@) and z; (x) be the corresponding left radii (for a definition see[3],
p. 14).

The space € of all planar convex curves of constant width w, en-
dowed with the Pompeiu-Hausdorff distance, is a complete metric
space (being closed in the space of all compact subsets of the
plane).

Properties of «most» elements of a Baire space, i.e. shared by all
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elements except those in a set of first category, are called generic. For
a survey of generic properties of convex bodies see[10].

THEOREM 1. Let C e € and consider a diameter of C with endpoints
x, yeC. Then

el @+ =w.
Before giving a proof let us remark that the theorem implies
s+ =ci e (Y =p, @)+ (W) =w
too.

Proor. First of all notice that z; (y) < w. Indeed, if it were not so
there would be a point y' e C arbitrarily close to y such that |lr —
—y'| > w, and C would not belong to ¢. Hence the inequality ».” (y) <
<w —z{ (x) is verified for ¢ () =0.

In case g/ (x)>0, let ¢ be the point of the diameter xy such
that

ke —~ el = ¢ @)

and take ¢* e cx different from ¢ and z. Consider the concentric circles
C', C" with centre ¢* and radii |lc* — |, [lc* — ¥||. Then a small arc
A’ ¢ C starting at x and lying on the right side of 2 is outside C" except
for the point x. Take an arbitrary point " € C" collinear with ¢* and
with some point of A’ \ {x}. The orthogonal projection of C onto the
line L through c¢* and " has length w and contains L N €’ in its interi-

~or. So y" lies in its exterior and therefore y" ¢ C. This proves that
245 (y) < |le* — yl| and, since this is true for every c* ecx\ {c, x}.

s =Sle—yl=w-2 (@.

If C includes an entire circular are starting at x and lying on the
right side of 2 then C must also include a circular are starting at y and
lying on the right side of y. So, trivially,

ai ) =w—-pz{ (x).

If C includes no such circular are and z; (&) < w, then there is a se-
quence of points x, € C converging to x from the right, such that the
cirele through x, tangent at x to C has its centre ¢, e ¢y \ {¢, y}. Now
consider the concentric circles C., C, with centre ¢, €ce, and radii
lle,, = I, lles — || such that ¢, — c. Let A, c C, be the circular are on the
right side of x from x to {x,} = C, N ¢, x,. Then the open connected
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bounded set D, with boundary ¢, « U A, U 2 ¢, must intersect C. Thus
any point of D, N C at minimal distance from ¢, is an endpoint of a di-
ameter of C with the other endpoint outside C. This proves that

pr () 2 lim g —yll = le — yl| =w - g7 (2).

n— =

For 27 (x) = w, the inequality reduces to ¢} (¥) = 0 and follows from
the convexity of C.
Hence

fs () =w— 5] (x)
and the theorem is proved.
TreeorREM 2. For most convex curves Ce G at any point xeC,
pi @) =0 or i (x)=w.
ProoF. The proof parallels that of Theorem 1 in[9). Let D, (z) de-
note the half-disc with the boundary line-segment of length 2r on the
innermrmala.t.rtoC.withxasabaundarypomtandwiththecircular

boundary arc on the right side of x. Let G, be the family of all convex
curves U € with a point x € C such that

D,-:(z)ceonvC
and
CcD,_,-1(x).

The set €, is nowhere dense in ¢, Indeed @, is clearly closed in @
and, moreover, the family of all Reuleaux polygons of width w is dense

in € (see (2], p. 510-511) and obviously disjoint from ¢,. Thus U ¢, is of
first Baire category in @ = met

It is an easy exercise to prove that U1 G, is precisely the set of all
convex curves C e ¢ with "

i (x)>0 and ) (@)<w

at some point r e C.
Hence, for most Ce ¢,

gi@=0 or i@ =w

&t each point reC.
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COROLLARY. For most convex curves Ce C the curvature exists
and equals 1/w a.e.

Proor. By a classical theorem of Aleksandrov[1], the curvature of
a convex curve exists and is finite a.e. This combined with Theorem 2
implies the corollary.

In 1975, M. Kallay [4] proved that the boundaries of the indecom-
posable eonvex bodies relative to ¢ are precisely the convex curves de-
seribed in Theorem 2. Here an element of € is indecomposable relative
to € if it is not a convex combination of any two other elements of ¢
(see[6], p. 156/7, but replace <compact» by «closed, bounded»). It is in-
teresting to note that the situation is quite different in the space X, of
all convex bodies in the plane, where only the triangles are indocom-
posable (see[5]). However, in the space X, of all convex bodies in the
Euclidean n-space as well as in the space of all closed bounded convex
sets whose elemets belong to X,,, indecomposability is a generie prop-
erty ([6], p. 152, and [7]).
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