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An arrangement of pseudolines in the Euclidean plane E? is a finite family of
simple curves, each asymptotic to some line at both “ends”, every two of which
intersect at precisely one point, at which they cross. Such arrangements, which
exhibit many of the properties of straight line arrangements, have been studied
since the work of F. Levi [2]; see [1] for an extensive bibliography up to 1971.

A spread of pseudolines in E? is the continuous version of an arrangement: an
infinite family of simple curves, each asymptotic to some line at both “ends”, such
that:

1. every two curves intersect at precisely one point, at which they cross;
2. there is a bijection L from the unit circle C to the family of curves such
that L(p) is a continuous function of peC.

Motivated by the fact that any finite arrangement of straight lines can be
extended to a spread of straight lines, B. Griinbaum conjectured in [1] that the
same should hold for pseudolines. It is this conjecture that we establish below:

Theorem. Every arrangement of pseudolines in E* may be extended to a spread of
pseudolines.

Proof. We begin by mapping E* to the interior of a disk, in such a way that
pseudolines in E? map to curves on the disk with endpoints on the circle bounding
the disk. Moreover it is easily seen by induction that an arrangement of pseudolines
in a disk is combinatorially equivalent to an arrangement of (piecewise linear)
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pseudolines in a regular 2n-gon such that each face in the arrangement is a convex
polygon, the pseudolines having antipodal vertices on the 2n-gon as endpoints.
Hence to prove the theorem we need only show that such a finite family of polygonal
pseudolines in the 2n-gon can be extended to an infinite family in which every point
p on the boundary lies on exactly one pseudoline L(p), with L(p) a continuous
function of p.

Let [ and I’ be two piecewise linear curves in the 2n-gon P with distinct
antipodal endpoints p, D and p/, ¥, respectively, and let us drop for a moment the
restriction that they meet (and cross) at precisely one point. Let g be an isolated
point of intersection of [ and I’ at which they cross. Thus some small topological
disk A contains ¢ and no other point of intersection of [ and I/, and { and I’ intersect
AA at four points, s, &, 3, and 3, lying between ¢ and p, p/, B, and 7/, respectively.
(See Figure 1.) We say that q is a proper intersection point of | and I’ if | and
I! cross at ¢ and if s, s, 5, 3 occur in the same order around A (clockwise or
counterclockwise) as p, p/, b, P do around P.

Fig. 1. q is a proper intersection point, Q* 1s not

We can then replace the global condition that curves intersect at precisely one
point, at which they cross, by the local condition that every point of intersection is
proper.

Lemma 1. Two piecewise linear curves with antipodal endpoints on a disk intersect
at precisely one point, at which they cross, if and only if every point of intersection
of the two curves is a proper intersection point.

Proof. Since the endpoint of each curve are antipodal, the first curve separates the
endpoints of the second and thus the curves must have at least one intersection
point. If there is only one, that intersection must clearly be proper. One the other
hand, if two piecewise linear curves [ and !’ intersect at more than one point, we
can list the points of intersection in order along I. Let ¢ and ¢* be two successive
points of intersection. It is not hard to see that if ¢ is proper then ¢* is not. |
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It is therefore sufficient to extend our arrangement of pseudolines to a contin-
uous family such that every intersection is proper. Let £ be our arrangement of
n pseudolines in the regular 2n-gon P, with endpoints at antipodal vertices, and
with each polygonal pseudoline having a vertex only at the intersection of two or
more pseudolines. The members of & partition P into a 2-dimensional cell complex
C(£), consisting of a set of (open) faces F(£), (relatively open) edges FE(£), and
vertices V(£). Edges of P are considered as belonging to E(¥), and their endpoints
as belonging to V(£).

Let 4 be the set of (open) edges of the polygon P. For each a €4, there are
two pseudolines, lq, I, €<, beginning at the endpoints of a. Let 74 =1,N1I,. Each
edge a €4 also has an antipodal edge @€, and we have {I,,1,} ={lg,IL}.

Fix an edge a € 4. We define an order relation R,(¥) on the cell complex £,
as follows. Assume edge e and vertex v lie in the interior of polygon P and on
the boundary Of of face f. Let e <, f (or simply e < f, if the subscript is clear
from context) if the pseudoline | €£ containing e separates a from f; otherwise, let
eqf. Let v=<, f if all the pseudolines [ € £ containing v separate a from f; let
v f if all the pseudolines | €£ containing v separate @ from f. Finally, for each
a €4 on the boundary of a face f, let a<, f and a>7z f.

For a given edge e € E(£)\d we then have e<, f and e, f’ for exactly one f
and one f/. Similarly, for a given vertex v in the interior of P we have v <, f and
vq f' for exactly one f and one f’. (See Figure 2.)

Fig. 2. Order relation f <qv =g f

Lemma 2. R,(£) extends to a partial order on the cell complex C(£).
Proof. Suppose there were a cycle
o <T1 <...<ZT =20

in Ry(£). Without loss of generality, we can assume that zg is a face of the
arrangement £. Then some pseudoline ! containing z; must strictly separate zg
from @. On the other hand, | must also strictly separate every z;, ¢ > 1, from a.
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Since x =2z cannot be strictly separated from both a and @ by [, there can be no
cycle in Ry (£). []

Let R:(£) be the transitive closure of Ry (£), and let us write <, (or simply
<) for this more general relation as well. (Intuitively, two cells ¢; and ¢ stand in
the relation ¢1 <gq ¢ whenever ¢; is “closer to ¢” than ¢ is.) Let G4 be the set of
all faces, edges, and vertices that are related to 7,:

Go={9g e FE)UEKLUV(L): g <qYa O g >qYa O § =Yg}

The pseudolines I, and I/, partition P into four (open) regions. Thus G consists
of 74, a and @, together with all the faces, edges, and vertices lying in the two open
regions adjacent to a¢ and @.

For each a €4 and f € G, we define the “bottom” of f with respect to a by:

By(f)={pe€df pcgeGq, g=alf}

(Notice that if f is the face having a on its boundary, then B,(f)=a.)

If g€ G, is an edge or a vertex, g #a, then there is a unique minimal face f
such that g <4 f. Thus for p € g there is a unique face f such that pe B,(f). In
particular, let f7 be the unique face for which v, € B(fy); notice that Ba{fs)="q.

Lemma 3. For every face f € Go\{ [}, Ba(f) is an open, non-empty arc.

Proof. Let ey,...,e; be the edges of f in cyclic order, and Iy,...,]l; the pseudolines
containing them. Direct each [; so that as Jf is traced in the counterclockwise
direction, each edge e; is traversed positively. Since I; and ;41 (the numbering
being modulo k) meet at a vertex of f, they meet nowhere else; hence their initial
points, as well as their terminal points, must fall on P in the same cyclic order.
It follows that those edges whose extensions separate a from f form just a single
connected sequence, which is necessarily non-empty if f # f7, from which the
conclusion follows. B

Let B, (f) and B (f) be the endpoints of B,(f), with B, (f), Ba(f), and
B (f) occuring in counterclockwise order around f.

Lemma 4. If a, b, @, b € occur in counterclockwise order around P, and if f €
Ga NGy, then By (f), By (f), Bz (f), Bg—(f) occur in (not necessarily strictly)
counterclockwise order around f; likewise for BJ (f), B;'(f), B;-'(f), B; ().

Proof. It follows by the same observation used in proving Lemma 3 that replacing
a by @, for example, produces a cyclic shift in the edges of f that contribute to

Ba(f)-

Lemma 5. There exists a family of mappings
(% : Ba(f) = Balf))aed, feGa\(f20£2)
such that:

1. each 14 is a homeomorphism;
2. 1z is the inverse of 14 for each a;
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3. for every distinct pair of points p, p’ € B,(f), the line segment joining p
to 1, (p) does not cross the line segment joining p’ to 1¥,(p');

4. if p€ Bo(f)NBy(f) and a, b, @, b occur in counterclockwise order around
P, then p, ¥4(p), Yp(p) are distinct points occuring in counterclockwise
order around f.

Proof. Fix a face f <€ Go\(f;U f5) for some a €4, and consider its boundary as a
(topological) circle. For convenience, let s(a)=B,(f) for each a €. We define the
maps 1., ¥z for successive pairs ay, @1; a9, @9; ... as follows: Choose a pair a, @
and let ¥, be an arbitrary circular-order-reversing homeomorphism from s(a) onto
s(@), and 1 its inverse. Now suppose 9,/ and ¢z have been defined for o/ €4’ CA
80 as to satisfy the desired condition, and suppose a, a€d\d'. Let " ={a'cA': f€
Ga}. Let a— and ay be the members of A" immediately preceding and following
a in counterclockwise order. If s(a_) or s(a4) does not overlap s(a), we need not
worry about it when defining 1. Suppose one of these arcs, say s(a_), does overlap
s(a). Then when defining 9, we need only take care that for p € s(a—)Ns{a) the
points p, ¥,_(p), ¥a(p) are distinct points lying in counterclockwise order around
f. But this can be done, precisely because of Lemma, 4.

If we construct these maps around the boundary of each face f, and then
join corresponding points by straight lines, it is immediate that condition (3) is
satisfied. I

Now extend each function 1, to Ba(fy), by letting ¢q(p) =7, for p€ Bo(fy).
Notice that for p€a, 1% (p) =, for some k> 0; this follows from Lemma 3 and the

finiteness of the situation.
Let

(P 'L/}a(p):"pg(p)v e ->1/1§(P) = Ya)

be the polygonal curve consisting of all the line segments (% (p), it (p)), 0<i<
k. For each peac. there is an antipodal point €@ 4. Let L(p) be the union of
the polygonal curves

(D, %a(P), W2(D), ..., ¥E (D) = 7a) and (B, Pz, W2(B), -, ¥ (B) = 7a)-

To complete the proof of the theorem, we will show that
S={Lp):pecacdlUL

is a spread of pseudolines.

Let [ and I’ be two members of . If |€£ and I' € ¥, then, by definition, they
intersect in exactly one point.

Suppose [ € £ but I ¢ £; say I’ = L(p) for p€ ae€.4. Since the endpoints of [
and of I’ are each antipodal, ! and I’ must intersect in at least one point ¢* € gt e
Gq, with g* either an edge or a vertex belonging to /. By the construction of I/, if
! intersects each of g, ¢’ € G, then either g <, ¢/ or g, ¢’. On the other hand,
no two vertices or edges belonging to ! are comparable under R} (£), by Lemma, 2.
Thus I can meet { only once.

Suppose [¢£ and I'¢£. If | and I have endpoints in the same arc a €4, then
by construction ! and {’ intersect only at -y,, where they cross. Suppose { and I’
have endpoints in different arcs, a and a’, respectively. Using the properties of 1,
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and 1, given in Lemma 5, it follows that every intersection of { and !’ is proper.
By Lemma 1, it then follows that [ and I’ intersect precisely once.

For each point p on the boundary of P, there is a unique pseudoline L(p)
starting at p. Since 9, is a continuously varying function of p € a, and L(p) is
determined by iterating 1., L(p) also varies continuously with p € a. Finally, the
continuity of L at the endpoints of each arc g follows from the surjectivity (and
monotonicity) of 1g. Thus & is a spread of pseudolines containing £. |

[Added in June, 1992: Using a different method, the authors have recently
succeeded in proving a stronger conjecture of Griinbaum’s, to the effect that every
pseudoline arrangement extends to a topological plane, and in fact that there is a
topological plane containing an isomorphic copy of every pseudoline arrangement;
details to appear in the American Mathematical Monthly.]
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