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A n  arrangement of pseudolines in the  Euc l idean  p lane  E 2 is a finite fami ly  of 
s imple curves,  each a s y m p t o t i c  to some line at  b o t h  "ends",  every two of which 
in tersec t  a t  precisely one point ,  a t  which they  cross. Such a r rangement s ,  which 
exhib i t  many  of the  p roper t i e s  of s t ra igh t  line a r rangements ,  have been  s tud ied  
since the  work of F.  Levi  [2]; see [1] for an extensive b ib l iography  up to  1971. 

A spread of pseudolines in E 2 is the  cont inuous  version of an a r rangement :  an 
infini te  fami ly  of  s imple curves,  each a s y m p t o t i c  to  some line a t  b o t h  "ends" ,  such 
tha t :  

1. every two curves in tersec t  a t  precisely one point ,  a t  which they  cross; 
2. there  is a b i jec t ion  L from the  uni t  circle C to the  fami ly  of curves such 

t h a t  L(p) is a cont inuous  funct ion  of p C  C. 
Mot iva t ed  by  the  fact  t h a t  any finite a r r angemen t  of s t ra igh t  lines can be 

ex t ended  to a sp read  of s t ra igh t  lines, B. G r i i n b a u m  conjec tured  in [1] t h a t  the  
same should  hold for pseudol ines .  I t  is this  conjec ture  t h a t  we es tabl i sh  below: 

T h e o r e m .  Every arrangement of pseudolines in E ~ may be extended to a spread of 
pseudolines. 

Proof .  We begin  by m a p p i n g  E 2 to the  in ter ior  of a disk, in such a way t h a t  
pseudol ines  in E 2 m a p  to curves on the  disk wi th  endpo in t s  on the  circle bound ing  
the  disk. Moreover  i t  is easi ly  seen by  induc t ion  t h a t  an a r r angemen t  of  pseudol ines  
in a disk is combina to r i a l l y  equivalent  to  an a r r angemen t  of (piecewise l inear)  
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pseudolines in a regular  2n-gon such tha t  each face in the a r rangement  is a convex 
polygon,  the pseudolines having an t ipodal  vertices on the 2n-gon as endpoints .  
Hence to prove the theorem we need only show tha t  such a finite family of polygonal  
pseudolines in the  2n-gon can be extended to an infinite family in which every point  
p on the bounda ry  lies on exact ly  one pseudoline L(p), with L(p) a continuous 
funct ion of p. 

Let l and 1 ~ be two piecewise linear curves in the 2n-gon P with  dist inct  
an t ipoda l  endpoints  p, p and p~, p~, respectively, and let us drop for a m o m e n t  the 
restr ict ion t ha t  they  meet  (and cross) at  precisely one point.  Let q be an isolated 
point  of intersect ion of l and l ~ at which they  cross. Thus  some small  topological  
disk A contains q and no other  point  of intersect ion of I and l ~, and l and l ~ intersect 
cgA at four points,  s, J ,  ~, and ~ ,  lying between q and p, p~, ~, and ~ ,  respectively. 
(See Figure 1.) We say t ha t  q is a proper intersection point of 1 and 1 ~ if 1 and 
1 ~ cross at  q and if s, s ~, ~, ~ occur in the same order a round A (clockwise or 
counterclockwise) as p, p/, ~, ~ / d o  a round  P .  

s 

P 

Fig. 1. q is a proper intersection point, Q* is not 

We can then  replace the global condit ion t ha t  curves intersect at  precisely one 
point ,  at  which they  cross, by the local condit ion t ha t  every point  of intersect ion is 
proper .  

L e m m a  1. Two piecewise linear curves with antipodal endpoints on a disk intersect 
at precisely one point, at which they cross, i f  and only i f  every point of  intersection 
of the two curves is a proper intersection point. 

Proof .  Since the endpoint  of each curve are ant ipodal ,  the first curve separates  the  
endpoints  of the second and thus the curves must  have at least one intersect ion 
point.  If  there  is only one, t ha t  intersect ion must  clearly be proper .  One the  other  
hand,  if two piecewise linear curves l and l ~ intersect at more t han  one point ,  we 
can list the points  of intersection in order  along l. Let q and q* be two successive 
points  of intersection. I t  is not hard to see t ha t  if q is p roper  then  q* is not.  | 
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It is therefore sufficient to extend our arrangement of pseudolines to a contin- 
uous family such that every intersection is proper. Let ~ be our arrangement of 
n pseudolines in the regular 2n-gon P, with endpoints at antipodal vertices, and 
with each polygonal pseudoline having a vertex only at the intersection of two or 
more pseudolines. The members of ~ partition P into a 2-dimensional cell complex 
C(2), consisting of a set of (open) faces F(~), (relatively open) edges E(~), and 
vertices V(~). Edges of P are considered as belonging to E(~), and their endpoints 
as belonging to V(~). 

Let ~d be the set of (open) edges of the polygon P. For each aC~, there are 
two pseudolines, la, lla E~, beginning at the endpoints of a. Let ~/a-= la n lla . Each 
edge a E ~  also has an antipodal edge ~E~d, and we have {la, l~a} ={l~,l~}. 

Fix an edge a CM. We define an order relation Ra(Z) on the cell complex ~f, 
as follows. Assume edge e and vertex v lie in the interior of polygon P and on 
the boundary cgf of face f .  Let e-~a f (or simply e-~ f ,  if the subscript is clear 
from context) if the pseudoline l EZ containing e separates a from f ;  otherwise, let 
e~af .  Let v - %  f if all the pseudolines l E ~  containing v separate a from f;  let 
v ~-a f if all the pseudolines l E ~  containing v separate ~ from f .  Finally, for each 
aE~d on the boundary of a face f ,  let a ~ a f  and a~--~f. 

For a given edge eEE(~f)\~d we then have e ~ a f  and e~-af' for exactly one f 
and one f/ .  Similarly, for a given vertex v in the interior of P we have v ~a  f and 
v ~a  f / f o r  exactly one f and one fl.  (See Figure 2.) 

Fig. 2. Order relation f ~ a  V ~ a  f 

Lemma 2. Ra(~) extends to a part ial  order on the cell complex C(~). 

Proof. Suppose there were a cycle 

in Ra(~). Without  loss of generality, we can assume that  x0 is a face of the 
arrangement ~ .  Then some pseudoline l containing xl  must strictly separate x0 
from ~. On the other hand, 1 must also strictly separate every xi, i > 1, from a. 
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Since xk =x0  cannot be strictly separated from both a and g by l, there can be no 
cycle in Ra(~). I 

Let Ra(~ ) be the transitive closure of Ra(~), and let us write -% (or simply 
-<) for this more general relation as well. (Intuitively, two cells Cl and c2 stand in 
the relation el -<a c2 whenever cl is "closer to a" than c2 is.) Let Ga be the set of 
all faces, edges, and vertices that  are related to %: 

Ga = {g �9 F(ag) U E(~)  U V ( ~ ) :  g -% % or g >-a % or g = %}. 

The pseudolines la and l~a partition P into four (open) regions. Thus Ga consists 
of %,  a and ~, together with all the faces, edges, and vertices lying in the two open 
regions adjacent to a and ~. 

For each a �9 and f �9 Ga, we define the "bottom" of f with respect to a by: 

S~( f )  = {p �9 O f :  p �9 g �9 G~, g -% f}.  

(Notice that  if f is the face having a on its boundary, then Ba(f)  =a. )  
If g �9 Ga is an edge or a vertex, g ~ G then there is a unique minimal face f 

such that  g -% f .  Thus for p �9 g there is a unique face f such that  p �9 Ba(f).  In 
particular, let f* be the unique face for which % �9 B(f*) ;  notice that  Ba( f~)=%.  

Lemma a. For every face f �9 Ga\{f*},  Ba(f)  is an open, non-empty arc. 

Proof. Let e l , . . . , ek  be the edges of f in cyclic order, and l l , . . . , lk  the pseudolines 
containing them. Direct each Ii so that  as Of is traced in the counterclockwise 
direction, each edge ei is traversed positively. Since li and li+l (the numbering 
being modulo k) meet at a vertex of f ,  they meet nowhere else; hence their initial 
points, as well as their terminal points, must fall on P in the same cyclic order. 
It follows that  those edges whose extensions separate a from f form just a single 
connected sequence, which is necessarily non-empty if f r f*,  from which the 
conclusion follows. I 

Let B : ( f )  and B+(f)  be the endpoints of Ba(f),  with B a ( f )  , Ba(f) ,  and 
B+a(f) occuring in counterclockwise order around f .  

Lemma 4. If  a, b, -g, b �9 M occur in counterclockwise order around P, and if f �9 
Ga n Gb, then Bg( f ) ,  B b ( f )  , B:a (f), B~ ( f )  occur in (not necessarily strictly) 

counterclockwise order around f;  likewise for B+~ (f), B + (f), B + (f), B + (f). 

Proof. It follows by the same observation used in proving Lemma 3 that  replacing 
a by g, for example, produces a cyclic shift in the edges of f that contribute to 
Ba( f ) .  

Lemma 5. There exists a family of mappings 

(~ba: Ba(f)  --~ Bg(f))ae~4,f~G~\(fguf~) 

such that: 
1. each ~ba is a homeomorphism; 
2. @~ is the inverse of tba for each a; 
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3. for every distinct pair of points p, p~ E Ba(f) ,  the line segment joining p 
to ~a(P) does not cross the line segment joining p' to %ba(p'); 

4. if  p E Ba(f)M Bb(f) and a, b, -6, b occur in counterclockwise order around 
P, then p, ~a(P), ~b(P) are distinct points occuring in counterclockwise 
order around f .  

Proof. Fix a face f E Ga\(f* U f*) for some a EM, and consider its boundary as a 
(topological) circle. For convenience, let s(a)=Ba( f )  for each a EM. We define the 
maps ~a, ~ for successive pairs a l ,  -61; a2, -62; ... as follows: Choose a pair a, -6 
and let Ca be an arbi trary circular-order-reversing homeomorphism from s(a) onto 
s(-6), and ~ its inverse. Now suppose Ca' and ~n, have been defined for a r EM ~ cod 
so as to satisfy the desired condition, and suppose a, -6 EM\M t. Let M" = {a ~ EM ~ : f E 
Ga,}. Let a -  and a+ be the members of M ~t immediately preceding and following 
a in counterclockwise order. If s(a_) or s(a+) does not overlap s(a), we need not 
worry about  it when defining ~a- Suppose one of these arcs, say s (a_) ,  does overlap 
s(a). Then when defining Ca we need only take care that  for pE s (a- )~s(a)  the 
points p, ~a_ (P), ~a(P) are distinct points lying in counterclockwise order around 
f .  But this can be done, precisely because of Lemma 4. 

If  we construct these maps around the boundary of each face f ,  and then 
join corresponding points by straight lines, it is immediate that  condition (3) is 
satisfied. I 

Now extend each function ~a to Ba(f*), by letting Ca(p)=~/a for pEBa(f*) .  
Notice that  for pea ,  ~ak(p) ='ya for some k_>0; this follows from Lemma 3 and the 
finiteness of the situation. 

Let 
(p ,  2 C a ( P ) , ' ' ' ,  Ca k(p)  =- "fa) 

be the polygonal curve consisting of all the line segments i i+1 ( r162  ( p ) ) , 0 < i <  
k. For each pEaEM there is an antipodal point pE-6EM. Let L(p) be the union of 
the polygonal curves 

(P,r162162 "/a) and (P,C-ffa, 2 - k' = = 

To complete the proof of the theorem, we will show that  

b ~ = {L(p) :p  E a EM} U ~  

is a spread of pseudolines. 
Let l and l ~ be two members of b ~ If  l E2g and l ~ E~,  then, by definition, they 

intersect in exactly one point. 
Suppose I E ~  but l ~ ~2g; say f f=L(p)  for p E a E d .  Since the endpoints o f /  

and of I r are each antipodal,  l and l ~ must intersect in at least one point q* E g* E 
Ga, with 9" either an edge or a vertex belonging to l. By the construction of if, if 
l ~ intersects each of 9, g~ E Ga then either g -% g~ or 9 ~-a g~- On the other hand, 
no two vertices or edges belonging to 1 are comparable under R~(~),  by Lemma 2. 
Thus l ~ can meet I only once. 

Suppose l ~ and l ~ ~ g .  If  l and 1 r have endpoints in the same arc a EM, then 
by construction l and ff intersect only at 7a, where they cross. Suppose l and l ~ 
have endpoints in different arcs, a and a ~, respectively. Using the properties of Ca 
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and ~b a, given in Lemma 5, it follows that  every intersection of l and l ~ is proper. 
By Lemma 1, it then follows that  l and 1 ~ intersect precisely once. 

For each point p on the boundary of P,  there is a unique pseudoline L(p)  
start ing at p. Since Ca is a continuously varying function of p E a, and L(p)  is 
determined by iterating Ca, L(p)  also varies continuously with p E a. Finally, the 
continuity of L at the endpoints of each arc a follows from the surjectivity (and 
monotonicity) of ~ba. Thus b a is a spread of pseudolines containing ~g. | 

[Added in June, 1992: Using a different method, the authors have recently 
succeeded in proving a stronger conjecture of Griinbanm's,  to the effect tha t  every 
pseudoline arrangement extends to a topological plane, and in fact that  there is a 
topological plane containing an isomorphic copy of every pseudoline arrangement; 
details to appear  in the American Mathematical  Monthly. l 
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