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Arrangements and Topological Planes 

Jacob E. Goodman, Richard Pollack, Rephael Wenger, 
Tudor Zamfirescu 

1. INTRODUCTION. Let r be a finite family of simple curves in the plane. When 
is there a homeomorphism of the plane to itself that takes all the curves in r to 
straight lines? 

In the Euclidean plane, E2, we are faced with the fact that two non-intersecting 
curves in our family must map to two parallel lines. This introduces extraneous 
technical complications that only distract from the essence of the problem. As with 
many other geometric questions, it is much simpler to avoid the special cases 
caused by parallel lines by moving to the projective plane. The real projective 
plane p2 iS the Euclidean plane E2 with an extra "line at infinity" adjoined, each 
point of which represents a parallel direction in E2. p2 has the virtue of simplicity: 
every pair of points determines a unique line which is topologically a circle (i.e., a 
simple closed curve), and every two lines meet at a unique point. Thus our 
question becomes: When is there a homeomorphism of p2 to itself that simultane- 
ously straightens all the members of a finite family r of simple closed curves? 

Certainly a necessary condition is that each of the curves be "nicely" embedded 
in the plane. More precisely, for each curve there must be some homeomorphism 
that takes p2 to itself and maps the curve to a straight line. In addition, every two 
of our curves must meet exactly once, and cross at their point of intersection, just 
as straight lines do. Are these two conditions sufficient? The answer is no, and a 
counterexample can easily be constructed using Desargues' theorem. 

Desargues' theorem, one of the basic theorems of projective geometry, asserts 
that if the corresponding sides of two triangles meet at three collinear points, then 
the three lines joining corresponding vertices are concurrent: see Figure la. On the 
other hand, Figure lb is an example of an arrangement for which Desargues' 
theorem fails: any homeomorphism of the plane to itself that mapped the ten 
curves in Figure lb to straight lines would yield an arrangement of lines that 
violated Desargues' theorem. Hence there is no homeomorphism of the plane to 
itself that simultaneously straightens the ten curves of Figure lb. 

Let us look for a moment at our two necessary conditions. A straight line I in p2 
does not separate p2, since any two points in p2 \ {1} are connected by some path, 
perhaps one crossing the line at infinity. (In contrast to this, a "small" circle does 
separate p2.) Thus if there is to be a homeomorphism of p2 to itself which maps 
some simple closed curve 1' to a straight line, then 1' must also not separate p2, 
i.e., p2 \ {1'} must be connected. It follows from Schoenflies' Theorem (see [12], for 
example) that the converse is true as well: If I' is a simple curve that does not 
separate p2, then there is a homeomorphism taking p2 to itself that maps 1' to a 

Some of the main results of this paper were presented at the Eighth Annual ACM Symposium on 
Computational Geometry in Berlin on June 11, 1992 [5]. 
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Figure la. Desargues' Theorem. Figure lb. A non-stretchable arrangement. 

straight line. Such a simple closed curve is called a pseudoline. A finite family of 

pseudolines in p2, with the property that any two meet exactly once (and necessar- 

ily cross), is known as an arrangement of pseudolines. 
To visualize an arrangement v of pseudolines in p2, one can model the 

projective plane as a circular disk with opposite points identified. For this purpose, 

remove some pseudoline l* E v from the projective plane. The remaining points 

then form a space (the Euclidean planet) homeomorphic to an open circular disk 

in E2. Call the closure of the disk /i. Each point on l* corresponds to an antipodal 

pair of points on the circle d/v. A pseudoline in v other than l* becomes a curve 

connecting antipodal points in /v. Thus an arrangement of pseudolines in p2 

corresponds to a family of Jordan arcs connecting antipodal points on a circle, 

every pair of arcs intersecting exactly once (or possibly at their endpoints); see 

Figure 2. 

Figure 2. An arrangement of pseudolines in the disk model of p2. 

Arrangements of pseudolines have been studied since the work of F. Levi [8], 

who first pointed out that, in spite of their resemblance to arrangements of straight 

lines, they are topologically more general objects. B. Grunbaum [6] published an 
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extensive monograph on arrangements in 1971, in which he answered many 
questions about line- and pseudoline-arrangements and posed many others. It 
turns out that the study of arrangements of pseudolines is equivalent to that of 
oriented matroids of rank 3; see [1] for a definition and good introduction to 
oriented matroids, and in particular for a discussion of their relationship to 
pseudoline arrangements. 

As in any field of mathematics, we classify arrangements, i.e., we partition them 
into classes of similar or "isomorphic" ones. This is done by considering their 
topology: Two arrangements are called isomorphic if zthere is some homeomor- 
phism of p2 to itself that maps the pseudolines in one arrangement to those in the 
other. 

An arrangement v of pseudolines, like an arrangement of straight lines, 
induces a decomposition of the projective plane into a cell complex W(v), 
consisting of cells of dimension 2 ("faces"), 1 ("edges"), and O ("vertices"). An 
isomorphism between two arrangements induces a one-to-one correspondence 
between their cell complexes that preserves incidence, i.e., neighboring faces in 
one arrangement map to neighboring faces in the other. The converse is also true: 
Suppose v and ' are arrangements and there is a one-to-one correspondence 
between W(v) and W(S') that preserves incidence. Patching together homeo- 
morphisms between corresponding faces gives a homeomorphism of the plane to 
itself that maps the pseudolines of one arrangement to the pseudolines of the 
other. Thus isomorphism between arrangements is really just a combinatorial 
relationship that can be defined solely in terms of the cells and their incidences. 

The question we posed at the beginning can now be restated as follows: Is every 
arrangement of pseudolines isomorphic to some arrangement of straight lines? 
The example above based on Desargues' theorem shows that the answer is "no". 
(G. Ringel showed [15] that even if we consider only arrangements with no 
multiple points, the answer still remains "no".) An arrangement of pseudolines 
that is isomorphic to some arrangement of straight lines is called stretchable. 
Unfortunately, determining whether an arrangement of pseudolines is stretchable 
turns out to be quite a hard problem (in fact, NP-hard: see [10, 11, 17].) 

While not every arrangement of pseudolines is stretchable, arrangements of 
pseudolines nevertheless share many properties with arrangements of straight 
lines. Given any arrangement of n straight lines we can always add another line 
through any two given points not both on the same line to form an arrangement of 
n + 1 straight lines. The same property holds for arrangements of pseudolines [8]. 

This result, known as the Levi Enlargement Lemma, implies that any arrange- 
ment of n pseudolines can be extended to an arrangement of n + 1 pseudolines. 
However, an arrangeinent of n straight lines can be extended to a much larger and 
richer structure, the topoldgical space consisting of all the lines in the plane. Each 
line is a '4point' in this space, and a neighborhood of the line through two points 
consists of all the lines through nearby pairs of points. 

Can every finite arrangement of pseudolines be embedded in some continuous 
family of pseudolines analogous to the set of all lines in the plane? Grunbaum 
posed this question in [6]. What should be the properties of such a family of 
pseudolines? First, this family should form a topological space analogous to the 
space of all lines in the plane. Second, this set of pseudolines, together with the set 
of points in the projective plane, should obey the basic incidence axioms of 
geometry: any two points should lie on a unique pseudoline, and any two pseudo- 
lines should intersect in a unique point. Third, the geometric and topological 
properties should be linked as they are for lines: as two pseudolines vary continu- 

868 [November ARRANGEMENTS AND TOPOLOGICAL PLANES 



ously, their point of intersection should vary continuously; as two points vary 
continuously, the unique pseudoline they define should vary continuously as well. 

Such structures are known to exist, and have in fact been studied for nearly a 
century. They are known as topological projective planes. A topological projective 
plane Q, in the sense we will use the phrase, consists of p2 as its underlying point 
set, and a second topological space L(Q) consisting of simple closed curves in p2 

as its set of "lines"; these satisfy the following conditions: 

1. for every two distinct points p, q E Q there is a unique curve lf p, q) E L(Q) 
containing p and q; 

2. every two distinct curves 1, 1t E L(Q) intersect in exactly one point at which 
they cross; 

3. If p, q) varies continuously as a function of p and q; 
4. 1 n 1' varies continuously as a function of I and 1'. 

As before, we use the term pseudolines for the curves in L(Q). 
Just as the neighborhood of a straight line through two points consists of all the 

lines through nearby pairs of points, the neighborhood of a pseudoline consists of 
all pseudolines through nearby pairs of points. Since p2 iS compact, this is 
equivalent to the topology induced by the Hausdorff metric on pseudolines: two 
pseudolines are within distance e of each other if each point of each pseudoline is 
within e of the other pseudoline here the metric on p2 iS the one coming from the 
standard metric on the sphere s2 when antipodal points are identified. 

Topological planes were discussed by Hilbert in his seminal book Foundations 
of Geometry [7]. There, he gave the first example of a topological Euclidean plane 
in which Desargues' theorem failed to hold. F. R. Moulton subsequently gave a 
simpler example, now known as the Moulton plane [13], which was incorporated 
into later versions of Hilbert's book. 

More recently, H. R. Salzmann [16] studied topological planes and their various 
axiomatizations. Among other results, he proved that, with hypotheses even 
weaker than the above conditions, L(Q) will always be homeomorphic to the space 
of points of the projective plane p2. He also showed that the fourth condition, that 
I n 1t vary continuously as a function of I and 1', is a consequence of the third 
condition, that l(p, q) vary continuously as a function of p and q, and vice versa. 
Many other interconnections among properties of topological planes are given in 
Salzmann's paper. 

Grunbaum's question can now be reformulated as follows: Given an arrange- 
ment v consisting of a finite number of pseudolines in the projective plane, is 
there some topological projective plane Q containing , i.e., a plane such that 
Sc L(Q)? If v were stretchable, this would be trivially true: take an isomorphic 
arrangement of straight lines, consider it as embedded in p2, and use the 
homeomorphism of p2 that straightens the pseudolines of v to define a new 
topological plane structure on p2 in which the "lines" are simply the inverse 
images of the straight lines of p2, But in general, if v is not stretchable, no such 
argument is available. Nevertheless, we will answer the question affirmatively in 
Section 2 below, by showing how to extend any arrangement of pseudolines to a 
topological projective plane; the solution will turn out, in fact, to be surprisingly 
simple. 

Grunbaum asked yet another, more sweeping, question in "Arrangements and 
Spreads". Assuming that every finite arrangement of pseudolines can be embed- 
ded in some topological projective plane, is there a single topological plane that 
contains every finite arrangement of pseudolines up to isomorphism? Another way 
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of posing this question is to extend our notion of stretchability. Recall that an 
arrangement of pseudolines is stretchable if it is isomorphic to some arrangement 
of lines in p2. For a topological projective plane Q, let us call an arrangement v 
of pseudolines in the projective plane stretchable in Q if it is isomorphic to some 
arrangement of pseudolines ' c L(Q). Then Grunbaum's question becomes: Is 
there some topological plane Q such that every arrangement of pseudolines is 
stretchable in Q? 

We will show in Section 3, using the embedding theorem of Section 2, that the 
answer is again "yes". Grunbaum called such a topological plane, whose existence 
he conjectured, a universal topological plane. 

2. FROM ARRANGEMENTS TO TOPOLOGICAL PLANES. One obvious ap- 
proach to extending arrangements to topological planes is the repeated use of the 
Levi Enlargement Lemma, adding new pseudolines one at a time in an infinite 
process. This would only generate a countably infinite family of pseudolines, 
however, so one must then "complete" this set by taking some sort of limit. The 
problem with such an approach is that one may unwittingly introduce discontinu- 
ities in taking this limit. While it is conceivable that such a technique may work, no 
one, to our knowledge, has been able to give a construction along these lines. 

Instead of adding pseudolines one at a time, our method will be to define 
pseudolines piecewise in different regions of the plane, and then to link the pieces 
together. As previously noted, an arrangement v of pseudolines splits the 
projective plane into faces. We will construct the topological plane by defining all 
the "pseudoline segments" traversing a given face and then showing how to join 
these segments to form pseudolines with the desired properties. 

To carry out our construction, we need a simple fact about stretchability, proved 
first by J. Richter-Gebert [14] in the "uniform" case, i.e., where no three pseudo- 
lines are concurrent: 

Lemma 1. Let a? be an arrangement of n pseudolines. If some face of v is 
bounded by at least n - 1 pseudolines, then v is stretchable, i.e., isomorphic to an 
arrangement of straight lines. 

The lemma is proved, without any assumption of uniformity, at the end of this 
section. 

We now proceed with our construction. Let v be any arrangement of n 
pseudolines in p2. Fix some distinguished pseudoline l* E S. This pseudoline will 
play a role in the topological projective plane similar to the role of the line at 
infinity in the standard model of p2. 

For each face f of the arrangement X, let Lf be the set of pseudolines 
bounding f. By Lemma 1, Lf u {I*} is stretchable. Let hf be a homeomorphism of 
the projective plane to itself that maps the pseudolines in Lf u {I*} to straight 
lines (notice that it is possible that Lf u {I*} = Lf). For each pair of distinct 
points p and q lying on different segments of df, there is a straight line segment a 
in hf ( f ) connecting hf ( p) to hf (q). hf- 1(a) is then an arc in f with endpoints p 
and q; see Figure 3. (As previously described, the arrangement v can be 
visualized as a set of Jordan arcs connecting antipodal pairs of points in a disk 
where l* maps to the circle bounding the disk. Of course the "straight" lines 
shown in Figure 3b are not really straight in the disk model; they can, however, be 
taken to be arcs of circles joining antipodal pairs on the disk boundary see [6].) 
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ht(l*) 

Figure 3a. Original face f. Figure 3b. A straightening of f. 

Let r be the set of all such arcs over all faces of S; the members of r form the 
"pieces" of the pseudolines we are going to construct. 

Let y be some arc of r lying in face f. hf(y) is a line segment which is part of 
some straight line I meeting hf(l*) at a point r "at infinity". Let s E I* be hf l(r), 
and label y with the point s. (One can think of s as the "slope" of arc y even 
though y may be far from linear, and even though this "slope" depends on the 
chosen straightening homeomorphism hf.) Label every arc y E r in this manner, 
and notice that if p is a point on 1*, then every arc with endpoint p has label p. If 
p is a point on the interior of some edge of f, where p E I and I E Lf and p 0 1*, 
then every point of l* \l occurs exactly once as a label of an arc in f with 
endpoint p. Finally, if p is a vertex of f, where p s 1 n 1' and 1, 1' E Lf and 
p 01*, then the labels of arcs in f with endpoint p form an arc on 1* between 
I r) l* and 1' r) 1*. 

The arcs in r can now be linked together to form pseudolines. For every point 
p lying on some pseudoline I E S\{1*}, let rp be the set of arcs in r with 
endpoint p. Then for every arc y E rp with label s there is exactly one other arc 

E rp, on the other side of 1, with the same label. Join these two arcs to form a 
longer arc, and continue. Repeating this for every point p lying on some pseudo- 
line other than 1*, we get a set r of arcs. We claim that L(Q) = r u v is the set 
of pseudolines of a topological plane Q. 

For the proof, it is useful to refer again to the disk model described above, in 
which each point s E I* is replaced by an antipodal pair s+, s- on the circle dlV 
bounding a disk 1V, and a pseudoline that intersects 1* at s becomes a curve with 
endpoints s+ and s-. 

We first show that in this disk model the endpoints of every I E r constitute an 
antipodal pair in dl. Start with any arc y0 E r that forms a segment of 1. y0 has 
some label s. Arc y0 is separated from s+ by some k < n pseudolines of . One 
of the two arcs joined to y0 is therefore separated from s+ by only k- 1 
pseudolines; let this arc be Y1 Y1 also has label s. Repeating this argument k 
times gives an arc yk with label s which has endpoint s+; thus I has s+ as one 
endpoint. A similar argument shows that s- is the other endpoint of 1. 

If two arcs have the same endpoints on dlV, i.e., the same labels, then it is clear 
that they can never intersect in the interior of 1v. On the other hand, it is also clear 
that two arcs in L(Q) cannot intersect infinitely often, since they can meet at most 
once inside each face of S. To prove that they intersect exactly once, we first 
establish a general lemma about arcs intersecting in the disk (cf. [4]). 
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Let I and 1' be any two arcs in 1 connecting distinct antipodal endpoints 51, 53 

and 521 54, respectively; I and 1' may intersect at more than one point. Let p be an 
isolated point of intersection of I and 1' at which they cross. In other words, there 
is some small topological disk 1v* containing p and no other point of intersection 
of I and 1'. Arcs I and 1' intersect dl* at four points, 51, 52* 53*, and 54*, with s* 
lying between p and Si on I or 1'. We say that p is a proper intersection point of I 
and 1' if 51, 521 53, and 54 occur in the same order around 1 (clockwise or 
counterclockwise) as s1, 52* 53*, and 54* do around 1v*. (See Figure 4.) 

ir/ S4 

, 
Figure 4. p is a proper intersection point; q is not. 

The following lemma replaces the global condition that arcs intersect at pre- 
cisely one point, at which they cross, by the local condition that every point of 
intersection is proper. 

I*mma 2. Two arcs connecting distinct antipodal points in the disk that intersect 
finitely often intersect at precisely one point, and cross there, if and only if every point 
of intersection of the two arcs is proper. 

Proof: Since the endpoints of each arc are antipodal, the first arc separates the 
endpoints of the second and thus the arcs must have at least one intersection 
point. If there is only one, that intersection must clearly be proper. On the other 
hand, if our two pseudolines I and 1' intersect at more than one point, we can list 
the points of intersection in order along 1. Let p and q be two successive points of 
intersection. Then it follows immediately from the definition that if p is proper, q 

is not. o 

We now prove that every two arcs in L(Q) intersect exactly once. Let 1, 1' 
E L(Q) be two arcs connecting distinct antipodal endpoints s1, 53 and 52X541 

872 [November ARRANGEMENTS AND TOPOLOGICAL PLANES 



respectively. Suppose p is an intersection point of I and 1' lying in the interior of a 
face f. By construction, I and 1' meet the boundary of f in four points, 51, 52* 53 S 
and 54, where s* lies between si and p on I or 1'. The order Of 51, 52 53, and 54 

around A agrees with the order of hf(sl), hf(s2), hf(s3), and hf(s4) around hf (A). 
Similarly, the order Of 51, 52* 53, and 54 around f agrees with the order of hf(s1 ), 
hf(s2*), hf(s3), and hf(s4) around hf(f). By construction, the intersection of 
hf(l) and hf(l') in hf(f) is proper; hence the intersection of I and 1' in f must 
also be proper. A similar argument holds if p lies on the boundary of a face f. 
Thus, by Lemma 2, every two arcs in L(Q) intersect exactly once. 

For every point p E p2 and every s E 1*, there is a unique pseudoline in L(Q) 
passing through p and s. This pseudoline varies continuously as a function of s, 
sweeping over the whole projective plane as s runs through 1*. Hence, for any 
p, q E p2, there is some pseudoline in L(Q) containing p and q. If two distinct 
pseudolines 1, 1' E L(Q) both contained p and q, then I and 1' would intersect 
more than once. Thus there must be a unique pseudoline 1( p, q) E L(Q) contain- 

* . ng p ana q. 

Finally, the continuity conditions on 1( p, q) and I n 1t follow from the fact that 
continuity is a local property, and that locally our pseudolines are nothing but 
homeomorphic images of lines. 

We have thus proved 

Theorem 1. Every arrangement of pseudolines in the projective plane can be extended 
to a topological projectiue plane. 

We conclude this section with the proof of Lemma 1 promised above. 

Proof of Lemma 1: Let v be an arrangement of n pseudolines, at least n-1 of 
which bound a face f of the arrangement, and let I be the nth pseudoline (or any 
one if all n bound f ). I is stretchable, so there is some homeomorphism of the 
projective plane to itself that maps I to the line at infinity, loo. Thus, without loss of 
generality, we may assume that I = loo. Let {11, 12, . . ., In_l} be the remaining set of 
pseudolines, X\ {1X}. 

If we remove loo from the projective plane, we are left with a Euclidean plane, 
which we assume coordinatized. Each point li n 1(>, can now be identified with 
some slope si in this plane. Without loss of generality, we can assume none of the 
slopes si is infinite. For each i, let 1i be the line with slope si tangent to the unit 
circle, with 11 chosen so that it passes above the unit circle if and only if li passes 
above f; see Figure 5. (li passes above f if there exists some suitably large y0 such 
that li separates f from (0, y) for all y > y0.) 

We claim that the pseudoline arrangement {11, 12, . . ., In_ 1} is isomorphic to the 
straight line arrangement {11, 12, . . ., In_1} in the Euclidean plane. Clearly this will 
imply that the arrangements {11,12, . . ., In_lS loo} and {11,1'2, . . ., In_l loo} are isomor- 
phic in the projective plane. 

The proof is by induction on the number of lines in the arrangements. It is 
trivially true for the arrangements {11} and {11}. Assume the arrangement vk= 

{11,12,**,1k} iS isomorphic to the arrangement ak' = {11,12, . *,lk} Consider 
what happens when we add Ik+l and Ik+l to S?k and vks respectively. Without 
loss of generality, assume Ik+l lies below face f. Orient Ik+l so that face t lies to 
its left. Pseudoline Ik+l first intersects the pseudolines of Ak lying above f whose 
slope is greater than Sk+l in order of increasing slope. Ik+l then intersects the 
pseudolines of Ak lying below f in order of increasing slope. Finally, Ik+l 
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4/a\2 <21 

Figure Sa. Pseudolines around a face. Figure Sh. Lines around the unit circle. 

intersects the pseudolines of Ak lying above k whose slope is less than Sk+l in 
order of increasing slope. (If some pseudoline above k iS "parallel" to Ik+lx we can 
consider it to be met by Ik+l after the rest.) 

By construction, Ik+l lies below the unit circle; orient it so that the unit circle 
lies to its left. Then Ik+l also first intersects lines above the unit circle with slope 
greater than Sk+l, then lines below the unit circle, and finally the lines above the 
unit circle with slope less than Sk+ 1 The order in which Ik+ 1 meets them is also by 
increasing slope. Since li passes above f if and only if li passes above the unit 
circle, and since the slopes of li and 1/ are equal, Ik + 1 and Ik + 1 intersect 
corresponding pseudolines and lines in the same order. It follows that Ik+l and 
k+l split corresponding faces in k and k in exactly the same manner. 

Therefore the arrangements vk+l = {1lx 12, * * * X Ik' Ik+l} and vk+l = 

{11X12XXX1kx/k+l} are isomorphic, and hence S\{loo} is isomorphic to the ar- 
rangement {11, 12, . . ., In _ 1} Of straight lines in the Euclidean plane. O 

3. UNIVERSAL TOPOLOGICAL PLANES. Recall that an arrangement v of 
pseudolines is stretchable in Q if it is isomorphic to some arrangement of 
pseudolines ' c L(Q). In the previous section we proved that for every arrange- 
ment v there is some topological projective plane Q in which v is stretchable. 
We will now show that there is a topological plane in which every arrangement is 
stretchable. 

We first need to introduce a technique for "patching" parts of one topological 
plane into another. Let Qsand Q' be two topological planes. Let 11, 12, and 13 be 
pseudolines in Q that are not concurrent. 11, 12, and 13 then decompose Q into 
four closed regions which we call triangles. Let X be any one of these triangles. The 
vertices of triangle X are the points 11 n 12, 12 n 13, and 11 n 13; see Figure 6. 

Similarly, choose three pseudolines in Q' that are not concurrent, label them 11, 
12, and 13, and let triangle ' be one of the closed regions bounded by these three 
pseudolines. Let + be a homeomorphism of ' onto X that maps the vertices of ' 
to the corresponding vertices of r; again, this will always exist by virtue of 
Schoenflies' theorem [12]. 

Define a new topological plane Q", with a new set of pseudolines L(Q") chosen 
as follows. For each I E L(Q), if I n int(X) = 0, then let I belong to L(Q"). 
Otherwise, I n T is a connected arc with two endpoints, p and q. Let I' be the 
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Figure 6a. Triangle . Figure 6b. Triangle '. 

Figure 6c. Topological plane Q". 

unique pseudoline in Q' passing through +-1(p) and +-1(q). Replace I n T by 
+(1t n t) to form a new pseudoline 1", and let 1" belong to L(Q"). 

We must show that every two distinct pseudolines lto, 1'1 E L(Q") intersect 
exactly once. But this is immediate from the fact that outside X nothing has been 
altered, while inside X two pseudolines meet if and only if their intersections with 
dr interlace, a property which is preserved by the homeomorphism +. 

We can now prove 

Theorem 2. There exists a universal topological plane in which every arrangement of 
pseudolines is stretchable. 

Proof: Every arrangement of n pseudolines has at most (2) + 1 faces. Since the 
question of whether two arrangements are isomorphic depends only on the 
combinatorial structure of their associated cell complexes, there are only a finite 
number of isomorphism classes of arrangements of n pseudolines. Thus the set of 
isomorphism classes of arrangements of pseudolines of arbitrary size is countable. 

Let S1, 2,v3, .. . be a sequence of pseudoline arrangements such that every 
arrangement is isomorphic to some <. Let QO be any topological projective plane 
(for example p2), and let r1, T2, T3, . . . be a sequence of pairwise disjoint triangles 
in QO. For each i > O, construct the topological plane Qi from the topological 
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plane Qi- l as follows. Embed < in some topological plane Q', using Theorem l. 
Let ' be some triangle in Q' containing all the intersection points of the 
pseudolines in <. (The existence of such a triangle ' follows by continuity, since 
we can always find a pseudoline avoiding all the intersection points in g and 
then take two other pseudolines sufficiently close to the first so that all the 
intersection points remain within a single region.) Replace triangle ri in Qi-l by 
triangle ' using the patching technique described above7 to form the topological 
plane Q*.I 

Let QOO be the topological plane which is the limit of the topological planes ri. 
The pseudolines L(Qo) are formed from the original pseudolines in Q0 by a 
(possibly infinite) sequence of local replacements. If two pseudolines 1, l' E L(Q) 
intersected at two distinct points, p and q, then some corresponding pseudolines l 
and It in some topological plane Qz would also intersect at p and q, which is 
impossible. Thus QOO is a topological plane. (The continuity conditions again follow 
as above, since they hold locally.) 

Since all the intersections of pseudolines in < occurred inside ', < is 
isomorphic to some arrangement <' c L(Qi). Because the triangle n is never 
modified after the ith stage of the construction, it follows that < is isomorphic to 
some arrangement in every Qj, j > i, including Q:O. Thus every arrangement is 
stretchable in QOO i.e., QOO is a universal topological plane. O 

Even though any universal topological plane contains all pseudoline arrange- 
ments, up to isomorphism not all universal topological planes are isomorphic. In 
fact, using the techniques above, different choices of triangles and patchings may 
be shown to lead to uncountably many non-isomorphic universal planes [3], 
answering another question posed in [6]. 

4. OTHEIt DIRECTIONS. If we start with an arrangement of straight lines in the 
projective plane and let hf be the identity map for every face f, then our 
construction will generate the standard projective plane p2, with L(P2) consisting 
of the usual straight lines. If hf is not the identity, however, then even starting 
with a straight line arrangement we can generate a topological plane that is not 
isomorphic to the usual one. 

In some sense, however, our construction does not generate topological planes 
whose pseudolines are too different from those in our original arrangement. An 
arrangement is called k-piecewise linear if each pseudoline in the arrangement is 
the union of at most k line segments. For any k, it turns out that there are 
pseudoline arrangements that are not isomorphic to any k-piecewise linear ar- 
rangement. (This can be shown, for example, by bounding the number of k-piece- 
wise linear arrangements of n pseudolines using the Milnor-Thom theorem [9, 18] 
on the Betti numbers of solution sets of polynomial inequalities of a semi-algebraic 
set, and using the lower bound proved in [2] on the number of isomorphism classes 
of arrangements of n pseudolines.) On the other hand, if we start with an 
arrangement of n pseudolines and construct a topological plane Q by our 
methods then any arrangement Sc L(Q) can be shown to be isomorphic to some 
k-piecewise linear arrangement, where k depends only on nX the number of 
pseudolines in the original arrangement S; this fact plays an essential role in the 
proof of [3]. 

In [6] Grunbaum discusses an object intermediate between an arrangement of 
pseudolines and a topological plane. A spread of pseudolines is a l-parameter 
family of pseudolines, any two meeting once, with the property that evety point 
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s E loo has a unique pseudoline through it which varies continuously as a function 
of s. In [6], Grunbaum asked if every arrangement can be extended to a spread, a 
question that we answered affirmatively in [4]. The much stronger resuit proved in 
Theorem 1 above is easily seen to imply that proposition. But our methods do not 
give any insight into the possibility of extending a spread to a topological plane, 
and this seems to be an intriguing question. 

FinallyS arrangements of pseudolines can be generalized to arrangements of 
pseudoplanes in dimension 3 (or of pseudohyperplanes in arbitrary dimension for 
that matter). These pseudoplanes should be "nicely" embedded in P3, every two 
should intersect in a pseudoline of each, and every three should intersect in a 
single point. Can any arrangement of pseudoplanes be embedded in a continuous 
3-parameter family of pseudoplanes, some sort of topological 3-space analogous to 
the topological space of planes in P3? 

Just as we demanded of the points and pseudolines of a topological projective 
plane, the points, pseudolines and pseudoplanes of a topological projective 3-space 
should obey the standard incidence axioms of geometry, and their intersections 
should vary continuously. Desargues' theorem, however, now turns out to be a 
direct consequence of these conditions instead of being an independent axiom as 
it was in the plane [7]. Since any such geometry in which Oesargues' theorem holds 
is isomorphic to the standard one, any such topological projective 3-space turns out 
to be isomorphic to the usual P3. On the other hand, there are certainly arrange- 
ments of pseudoplanes that are not isomorphic to arrangements of ordinary 
planes. This shows that there is no straightforward generalization of Theorem 1 
possible to arrangements of pseudoplanes. 
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Misunderstanding 
Ah, you are a mathematicianS 

they say with admiration 
or scorn. 

Then, they say, 
I could use you 
to balance my checkbook. 

I think about checkbooks. 
Once in a while 
I balance mine, 
just like sometimes 
I dust high shelves. 

From Intersections: Poems by JoAnne Growney, 
Kadet Press, Bloomsburg, PA, 1993, p. 50. 
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