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For most Convex Discs Thinnest Covering
is not Lattice-like

G. FEJES TOTH and T. ZAMFIRESCU

The covering density ¥(C) of a convex disc C in the Euclidean plane is
defined as the infimum of the densities of all coverings with congruent copies
of C. The lattice covering density 91 (C) of C is the infimum of the densities
of all lattice coverings with C. The family of those convex discs for which
¥(C) = 9.(C) plays a special role. In this paper we show that this class of
convex sets is small in the following sense:

Theorem. Let C be the space of all convex discs in the plane equipped
with the Hausdorff metric. Let N be the subset of C consisting of all convex
discs C for which ¥(C) # ¥91(C). Then N is an open dense set in C.

An analogous result for packings is proved in another paper of the
first author [3]. The first result concerning packing properties of typical
convex sets is due to Gruber [4] who showed that most convex bodies
have surprisingly few neighbors in their densest lattice packing. For other
properties of typical convex sets we refer to the survey papers of Gruber [5]
and Zamfirescu [7].

The openness of A follows immediately from the continuity of the
functionals ¥(C) and ¥.(C). Let Q be the family of polygons P with
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the property that no two different pairs of vertices of P determine parallel
lines. It is easily seen that Q is dense in the set of all convex polygons,
hence it is dense in C. Thus, to prove the theorem it suffices to show that
Y(P) > IL(P) for all P € Q.

Let us recall the notion of a p-hexagon introduced by W. Kuperberg
[6]. A p-hezagon is a convex hexagon with a pair of opposite sides of equal
length. Here "opposite” means separated by two sides, and degenerate cases
in which one, two, or three of the sides consist of a single point are allowed.
Each p-hexagon P admits a tiling with congruent copies of P, however
there is no lattice-tiling with P unless P is centrally symmetric. If P is a
p-hexagon contained in C' and 7 is a tiling with P, then the corresponding
copies of C' form a covering with density a(C)/a(P). Therefore, denoting
by hy,(C) the maximum area of a p-hexagon contained in C, we have

(1) HC) < a(C)/hp(C).

We shall use the technique of generalized Dirichlet cells introduced by
L. Fejes Té6th [3]. (See also Bambah and Rogers’ paper [1] for a more
accurate description of these cells). In case of lattice arrangements the
construction can be considerably simplified so, for sake of completeness, we
describe it in some detail.

Let A be a lattice such that the sets {C'+g}, g € A, constitute a covering.
Suppose that the interiors of the discs C and C + a, a € A intersect. Then
the boundary of the set C' N (C + a) can be divided into two arcs A; and
Ay with the common end points z and y such that A; belongs to bd C' and
Ay belongs to bd(C + a). The arcs A; — a and As — a intersect in the
points x — a and y — a, they belong to bd(C — a) and bd C, respectively
and together they form the boundary of the set (C' — a) N C. Let C be the
set obtained from C' by replacing the arcs A; and As — a by the straight
segments zy and (z —a)(y —a). Then the sets {C +g}, g € A, form a lattice
covering such that int C N int(C + a) = (. Repeating this construction we
obtain in finitely many steps a convex subset C of C such that {C + g},
g € A, is a lattice tiling. It follows that C is a, possibly degenerate, centrally
symmetric hexagon. Hence we get

. (2) 91(C) = a(C)/h*(C),

where h*(C') denotes the maximum are of a centrally symmetric hexagon
contained in C. In view of (1) and (2) we have to prove only the following
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Lemma. For any P € Q we have

hp(P) > h*(C).

Proof. Consider a polygon P € Q and let H be a centrally symmetric
‘hexagon contained in P. We shall show that there is a p-hexagon H such
that a(H) < a(ﬁ ). We suppose, indirectly, that this is not true, and obtain
a contradiction.

If H is degenerate, that is H is a parallelogram, then H # P, so
choosing a point p € P\H, H = conv({p} N H) is a (degenerate) p-hexagon
with the required property. Thus we have to consider only the case when
H = hihs...hg is nondegenerate. If a vertex of H is contained in int P,
then there is a point p € int(P\H) such that H C conv({p} N H). Again,
H = conv({p} N H) is a p-hexagon such that a(H) < a(H). Therefore we
assume that

(i) all vertices of H lie on bd P.

Next we assume that

(ii) no three consecutive vertices hi—1, h; and hiy1 of H are in a position
such that h; is an interior point of a side s of P not parallel to the line
hi—1hite

Otherwise we replace h; by an appropriate point hi of s such that
a(fbi_libifLi+1) > (L(hi—lhihi-{-l)-

We obtain thereby a p-hexagon H = hi...h. .. hg contained in P with
a(H) > a(H).
In particular, we assume that

(iii) if a vertex of H 1s interior to a side of P, then the vertex of H
opposite to it is a vertex of P.

For, if both h; and hy4, say, are interior points to sides of P, then the
diagonals hghe and hshs of H are parallel but the sides of P containing h;
and hg are not. Thus we have a situation excluded above.

The proof of the Lemma will be complete by showing that there is no
centrally symmetric hexagon satisfying properties (i) to (iii). Since P € O,
no six vertices of P can form a centrally symmetric hexagon. Therefore
there is a vertex of H which is an interior point of a side of P. According
to the above, the vertex of H opposite to this vertex is a vertex of P. It



108 G. FEJES TOTH, T. ZAMFIRESCU

follows immediately that there are two consecutive vertices of H, hy and hs
say, such that hy is a vertex of P and hs is an interior point to some side of
P. We conclude by (ii) that hg is interior to a side of P, and by (iii) that hg
and hs are vertices of P. By the central symmetry of H the diagonal hohy
of H is parallel to h1hs. On the other hand, hihs is a diagonal of P, and
by P € Q, the side of P containing h3 is not parallel to this diagonal. Thus
the vertices ho, h3 and hy4 are in a position contradicting assumption (ii).

This completes the proof of the Lemma and simultaneously the proof
of our Theorem.
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