
Math. Nachr. 172 (1995) 313-324 

On Some Questions about Convex Surfaces 

By TUDOR ZAMFIRESCU of Dortmund 

(Received March 23, 1993) 
(Revised Version January 14, 1994) 

Introduction 

Chapter A35 in the very enjoyable book [4] of CROFT, FALCONER and GUY treats geodesics 
on more or less smooth convex surfaces in IR3. Our aim here is to answer a few questions 
mentioned there. 

So for example the 43 years old problem of GOTZ and RYBARSKI ([6], p. 301 -302): Is 
the sphere the only surface for which whenever points can be joined by two distinct segments 
(i.e., shortest paths between two points), then they can be joined by an infinity of segments? 
We shall show here that every such surface is a “Wiedersehensflache”, i.e., a surface on 
which all geodesics from an arbitrary point meet again, the lengths of the geodesic arcs 
up to that meeting point being all equal (the term was invented by BLASCHKE). GREEN 
proved BLASCHKE’S conjecture that all C3 Wiedersehensflachen are spheres. 

STEINHAUS [lo] showed that there always exist at least two distinct segments from a point 
to any farthest point on a C3 surface homeomorphic to S2.  This is also an easy consequence 
of the more recent well-known Aleksandrov-Toponogov theorem, which works for any C3 
variety (and in any dimension). We shall prove it for any C’ convex surface. For arbitrary 
convex surfaces this is no longer true, as the example of a long thin pyramid shows. 

STEINHAUS also asked what can be said qualitatively about the set of all farthest points 
from a given point on a convex surface, observing that it may not be connected. It has 
been pointed out by ALEKSANDROV that an (intrinsic) circle may be homeomorphic to any 
compact subset of the Euclidean circle (among other possibilities). The set of farthest 
points, a special circle on the surface, may be homeomorphic to  any compact subset of 
the line, as well shall see. Each of its components must be a point or a Jordan arc. Its 
Hausdorff dimension is as expected a t  most 1 and its 1-dimensional Hausdorff measure at 
most mx, where r,  is the distance from the given point x. 

The last section is devoted to the well-known conjecture of HILBERT and COHN-VOSSEN 
[8] claiming that every surface on which all geodesics from an arbitrary point meet again 
in another point is a sphere. 

We shall make extensive use of the methods of ALEKSANDROV [l]. In most cases we will 
precisely refer to the used results from [I]. But generally speaking knowledge of large parts 
of [l] would be of much help for the reader. 

Thanks are due to the referee for his or her comments. 
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On multijoined points 

Let S c lR3 be an arbitrary (closed) convex surface, i.e., the boundary of an open 
bounded convex set, and denote by e its intrinsic metric. Let x E S.  A point y E S is called 
here multijoined to x if there are at least two segments from x to y .  

It is easily seen that the set of all points y admitting at least 3 segments from x to y is 
at most countable. This has been independently observed by P. GRUBER. 

The set C, of all points of S multijoined conjugate to x is small from both the measure 
theoretic and Baire category points of view. Indeed, we proved in [14] that C, is o-porous 
and therefore of (2-dimensional) measure 0 and of first category. We are going to show 
here that C, is always connected. This was known to differential geometers under stronger 
smoothness assumptions and conjectured for arbitrary convex surfaces in [ 151. 

Theorem 1. For any point x on a convex surface S c lR3 the set C, is arcwise 

The proof of the theorem makes use of the following simple lemma. 

connected. 

Lemma 1. Assume that a, b, y ,  z belong to a convex surface S c lR3 and are all distinct 
(except possibly for a, b) .  r f  the distinct segments C,, from a to y and Z b y  from b to y are 
equally long and the distinct segments Coz.from a to z and z b z  from b to z are equally long 
too, then 

C,, n Cb, = ZnZ n z b y  = {a}  n {b} . 
Proof.  It suffices to prove the second equality. Suppose, on the contrary, 

c E C,, n C b y  \ {a ,  b). Since 

@(a, 4 + e(c, Y )  2 @(a, Y )  = @(b, Y )  9 

it follows that @(a, c) 2 @(b, c). Analogously, e(b, c)  2 @(a, c), whence @(a, c) = @(b, c). 

Since 
Let C, be the subsegment of CnZ from a to c and C2 the subsegment of c b y  from c to y .  

e(a,c) + e(c?Y) = e(b, c) + e k Y )  = @(b,Y) = @ @ ? Y ) >  

Zl u 1, is a segment, different from C b ,  but having with it the common arc C,, in 
contradiction with basic properties of segments on convex surfaces (see [I], p. 84-85). 
Since a E Cb, only if a = b, because @(a, y )  = @(b, y), and, analogously, b E C,, only if a = 6, 
the second equality is verified. 

Proof  of Theorem 1. If C, is a single point there is nothing to prove. If y ,  z E C, we 
choose two segments C;, Z,2 from x toy and another two Ci, Z$ from x to z .  The mentioned 
basic properties of segments on convex surfaces ([I], p. 84 - 85) imply that 

c: n = {x, y )  , z! n = {x, z> , 

and Lemma 1 (with x = a = b) yields 

(C; u C,2) n (C: u Cf) = {XI. 
Thus the four segments divide the surface into three domains (i.e., open connected sets), 

one of which has all four on its boundary. Let D be this domain. We may assume that a 
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X,f Fig. 1 

small circle f (in the intrinsic metric of S) of centre x and radius E meets the segments in 
the order ,Ti, C:, C:, C:. Let f,, f2, f,, f l  be the arcs in which the preceding segments 
divide r (f, between Ck and Z;, Tz between C,” and C:, etc.). Let Q be a (full, topologically 
closed) square of vertices xi, y‘, xi, z’ in the Euclidean plane (see Figure 1). If Q’ denotes 
Q with identified vertices xi, xi, then there obviously exists a homeomorphism cp between the 
closure B of D and Q such that xi = xi = cp(x), y’ = cp(y) and z’ = cp(z). This obviously in- 
duces a multifunction, which will also be denoted by cp, from D to Q (with ~ ( x )  = {xi, xi}). 
Equip Q \ {xi, x i }  with the distance given by the length of the shortest path between 
the corresponding points in 0, which does not contain x. Define the distance between a 
point in Q \ {xi, x;} and x: to be the length of the shortest path from the corresponding 
point of to x crossing fi for E arbitrarily small. Also, let the distance between x i  and 
xi be the length of the shortest closed curve through x, not contractible in Td.  Denote by 
6 this metric of Q and put 

Q i  = {U E Q: 6 ( ~ ,  6 ( ~ ,  x;)} , 
Q2 = (U E Q xi) > 6 ( ~ ,  4)) , 
Q 3  = {U E Q : 6 ( ~ ,  x;) = 6(u, xi)} . 

7 .  

Let z,, z, be the tangent directions of C:, Z: in x. They belong to the closed Jordan curve 
T, c S2 of all tangent directions at x. Let I be the arc on T, from zy to z, not containing 
the tangent directions of C:, C: in x. Now, a direction z E T, is called singular if no segment 
starts at x in direction z ([l], p. 213). For any nonsingular 7 E I, let e(t) be the endpoint 
of the maximal (by inclusion) segment C(z) in S starting at x in direction z. If 7 is singular 
or cp(e(7)) E Q1, let e’(t), e”(z) be the endpoints of the maximal (by inclusion) open arc in T, 
containing 7 such that cp(e(o)) E Q1 for any nonsingular c in the arc. 

Suppose e(e’(7)) + e(e”(z)) for some z E I .  Of course cp(e(e’(7))) and cp(e(e”(7))) are distinct 
and belong to Q3.  Consider the following four segments: cp(Z(e’(z))), a segment from 
cp(e(e’(7))) to xi, another segment from xi to cp(e(e”(z))), and cp(Z(e”(z))). Their union is, by 
Lemma 1, a closed Jordan curve J .  Let C be a Jordan arc from x; to x; whose interior 
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points lie in the Jordan domain bounded by J and included in Q. Since xi E Q, and x i  E Q2,  
there must be a point c in C n Q3.  Then, for any segment C c Q from xi to c, the segment 
cp-'(C) c S must have a tangent direction cr between e'(z) and e"(z), while cp(e(a)) 4 Q1, a 
contradiction. Hence e(e'(z)) = e(e"(r)). Then the map f :  Z + S defined by 

is continuous (use [l], p. 76) and ,f provides an arc whose points are all multijoined to x. 

On farthest points 

We shall prove here that the set F, of all farthest points on S from x E S is strongly 
related to the set C,: In any case F ,  c c, often F ,  c C,. 

Theorem 2. Let S cIR3 be a conuex surface and x E S. Then F, c c. Any angle between 
two tangent directions at a point y E F, measuring (on the tangent cone) more tkan 7c contains 
the tangent direction of a segment f rom y to x .  So if the full angle oj S at y is larger than 
n, then y E C,, and if's is differentiable at y and there are only two segments j rom x to y ,  
then these have opposite tangent directions at y .  

Again we establish a lemma before proving the theorem. 

Lemma 2. Let r be a Jordan closed curue on a convex surfnce S c lR3 and let a, b,  x E S / r. 
Suppose that between every point of l- and x there is a unique segment, and a, b do not belong 
to any such segment. Then r does not separate a,from h. 

Proof.  Suppose, on the contrary, that r separates a from b. Denote by 0 the union OF 

On one hand, since a, b 4 0, but r c 0, the set 0 is not contractible. 
On the other hand, if p ( o ,  r) denotes the point of the segment (supposed unique) from 

x to u, at distance r from u ,  the function p is continuous in both variables (use, for example, 
(10.5), (10.5'), (11.3) in [3]). Now, there is indeed a unique segment from x to u for any 
u E 0. Then the homotopy H :  0 x [O, 11 + 0 defined by 

all segments joining points in r with x .  

H ( 4  t )  = P ( V >  tdx, 0)) 

shows (see [5] ,  p. 362) that 0 is contractible. A contradiction is found. 

Proof  of Theorem 2. Let f E  be a small circle of radius E around y, homeomorphic to 
S' (whose existence is guaranteed for E small enough, see [l], p. 383). Suppose that 
rE n C, = 8. Then, by Lemma 2, every point on S separated from y by rE  lies on the 
segment from x to some point of re. Let C, denote the segment from x to an arbitrary 
point u E rE. Also, let C be a segment from x to y and consider s 4 C. If ra n C, = Q, for 
arbitrarily small E > 0, let E be so that re separates s from y and consider the point u E fE 
with SEC,.  By taking a sequence of numbers E converging to 0, we get a sequence of 
segments with x as an endpoint, all containing s. This sequence converges to a segment 
from x to y containing s. Thus y E C,. Otherwise, if re n C, + 8 for a sequence of numbers 
E converging to 0, obviously y E c. 
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Suppose that there is an angle T at y between z1 and z2 measuring on the tangent cone 
at y more than n, but not containing the tangent direction of any segment from y to x. Let 
zo be the middle point of T (viewed as an arc of the rectifiable curve T,). Clearly, the angles 
from z1 and z2 to T~ measure more than 42. Let C’ be a segment with an endpoint in y 
and with a tangent direction T’ at y so close to T~ that the angles from z1 and z2 to z’ are 
still larger than n/2. The existence of c’ is guaranteed by the fact that the singular directions 
form a set of measure 0 (see [l], p. 213). Let t EC’ \ { y }  (see Figure2). Of course, 
~ ( x ,  t )  I e (x ,  y).  For t + y choose the segment C, from t to x so that C, converges to an 
arc C. Then C is a segment from y to x and therefore its tangent direction G at y is not in 
T Hence the angle from G to z’ is larger than n/2. Consider the Euclidean triangle with 
side lengths e(x ,  y) ,  Q(y,  t),  e(t,  x). Its angle u opposite to the side of length @(t, x )  is not 
larger than its angle opposite to the side of length e(x, y )  and therefore smaller than n/2. 
The angle between G and T’ is smaller than 01 + w; here w is the curvature of the triangle 
withsidesZ,Z;,C,, whereziis thesubarcofZ’fromytot (see[l],p.215).Sincew -+ Oast -+ y ,  

lim sup (a + w)  5 7~12, 
f - Y  

whence the angle between G and T‘ is at most x/2 and a contradiction is obtained. 
The remaining assertions of the statement follow immediately. 

The problem of GOTZ and RYBARSKI 

Now we pass to the mentioned problem of GOTZ and RYBARSKI [6]. The results in the 
previous sections will be useful here. 

Theorem 3. Let S c R3 be a convex surface such that whenever points can be ,joined by 
two distinct segments then they can be joined by three distinct segments. Then S is a 
Wiedersehensjlache. 

Proof. Let X E S  and suppose that C, contains two points y ,  z. Then, by Theorem 1, 
C, includes a whole arc A from y to z. Since there are only countably many points in C, 
joined with x by at least three segments, for many points in A this cannot happen, in 
contradiction with the hypothesis. So C ,  contains a single point y. By Theorem 2, y must 
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be the unique farthest point of S from x. Indeed, if y‘ E F ,  \ { y } ,  then y’ 4 C,; in this case 
Theorem 2 tells us that y’ E \ C, which yields the infinity of C, and a contradiction is 
obtained. For any nonsingular tangent direction z at x let again e(z) denote the other 
endpoint of the maximal segment starting at x in direction z. 

Suppose that e(z )  4 y for some nonsingular T. Let r be an intrinsic circle on S of centre e(z )  
and with a radius small enough to guarantee that r is a Jordan curve (see [l], p. 383) separat- 
ing e ( t )  from both x and y .  Since e( t ) ,  y do not belong to any segment from a point of r to x, 
Lemma 2 implies that e(z), y are not separated by f, and a contradiction is found again. 

Hence e(z) = y for all nonsingular z E T,. Because every tangent direction rr E T, is the 
limit of a sequence of nonsingular directions, some subsequence of the corresponding 
sequence of segments from x to y converges to a segment from x to y having rr as tangent 
direction at x (use [l], p. 158). Hence D is not singular. 

Therefore for every z E T, we have e(z) = y ,  which proves that S is a Wiedersehensflache. 

Corollary. Each C3 convex surface in IR3 such that wheneuer points can be joined by two 

This follows from Theorem 3 together with GREEN’S result in [7]. 

distinct segments then they can be joined by three distinct segments is a sphere. 

A question of STEINHAUS 

We now turn to STEINHAUS’ question about the set of all farthest points from some given 
point of a convex surface S c IR3. The set F ,  of all farthest points from x E S is a circle, 
the largest possible with centre at x. Let C(x, r )  denote the circle 

{Y  € S : e ( x , y )  = r )  

of centre x and radius r. Also let r,  = e(x, z), where z E F,. Clearly C(x,  r )  4 8 if and only 
if 0 I r I r,, and C(x, I,) = F,. We denote by pa the a-dimensional Hausdorff measure. 
It is well-known that p,C(x, r )  I 2nr. So p 2 C ( x ,  r )  = 0. The following easy proposition 
confirms this and applies of course in particular to F,. For a definition and applications 
of porosity and strong porosity, see [12], [13]. 

Proposition. For any point x E S and any r 2 0, C(x, r )  is strongly porous. 

Proof.  Let y E C(x ,  r )  and consider a segment C from x to y.  For any point z E C \ { y }  
the open ball B of centre z and radius e(z, y )  is disjoint from C(x, r). Indeed, for every point 
w E B, 

e(x, w) I e(x, 4 + @(A w) < e(x, 4 + e(z, Y )  = r 

and therefore w + C(x ,  r).  Thus C(x, r )  is strongly porous. 
By Lebesgue’s density theorem, every porous set has measure 0. 
More information on the dimension and measure of F ,  is provided by the next theorem. 

For a definition and further facts on Hausdorff measures, see [9]. 
In the proof of the next theorem we shall use the following notation. If the segments 

,Y*,C** c S have an endpoint b in common, let (C*bZ**) denote the measure (on the 
tangent cone) of the (smaller) angle between C* and Z** at b. Also, for x E S, let v(x) c S2 
denote as usual the spherical image of x. 
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Theorem 4. For any point x E S,  the Hausdorff dimension of F, is at most 1 and 

p l F x  I nr,.  

Proof. The set of all points in F ,  which are isolated or conical is at most countable. 
Let F* be its complement in F,. We only have to prove that glF* I nrx. 

Let a,a, E F ,  be such that a, =+ a and a, + a. Of course p2v(a,) --t 0 as n -+ co, whence 
the measure of the full angle of the tangent cone at a, tends to 2n. So, by Theorem 2, from 
some index on, for every n there are two segments C,, Z,M from a, to x; we choose them so 
that any other segment from a, to x is separated from a by C:, u Z,M (see Figure 3). Then 
we may assume (take a subsequence if necessary) that C:, + Z’ and C i  -+ Z”, say. Let C, 
be some segment from a to a,. Since e(x, a,) is constant for n E IN, (C’aZ,), (C”aC,), (Z$,C,), 
(C;a,Z,) converge all to n/2 (see [l], p. 381 - 382). So C‘ and Z” make an angle (the angle 
toward infinitely many a,‘s, not the smaller one, but possibly both of them) equal to n at 
a. (This implies that the full angle of S at a measures at least n and that if it is precisely n 
then C: = C”.) 

Now take a E F*. We have (C:aZ”) = n. Even though there might be more segments 
from a to x, only C’ and Z” are opposite at a. We associate these two segments to any point 
a E F*. Fix a certain sense on the rectifiable curve T, c Sz of all tangent directions at x. 
For any point a E F*, let a(a) and a’@) be the tangent directions at x of the segments 
associated to a. That .(a) and a’@) divide T, into two arcs of equal lengths may happen 
for one point a = a, at most, because segments associated to different points of F* cannot 
cross each other. For any point a E F* \ {a,} choose a(a) and .’(a) on T, such that the arc 
of T, from a(a) to a’(a) in the chosen sense is the smaller one. Let A denote the distance along 
T, and set 

A = { ~ ( u ) : u E F * ) ,  A ‘ =  ( ~ ’ ( u ) : u E F * ) ,  

A,  = {ct(a):A(u(a), ~ ’ ( a ) )  2 rn-’), 
A; = {c t ‘ (~ ) :A(a(~ ) ,  .’(a)) 2 m - l }  . 

Fig. 3 
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Suppose now a(a,) + j on T, and @(a,) E A ,  for all n. Then a‘(a,) --f p’ for some point p’ 
such that the arc from fl  to p’ in the chosen sense is not the larger one and A@, p’) 2 m-’. 
Suppose that the arcs of T, from p to p’ are not equally long. Then a suitable subsequence 
of {u,,}:=~ converges to some point a and a(a) = 8, a’(a) = p’ or a is a conical point. If a 
is a conical point, then p 4 A u A’. If not, /r E A ,  and this excludes p E A;. Suppose now 
that the arcs of T, between j? and p’ are equally long. Then a suitable subsequence of 

converges to a, and either a(ao) = fl ,  a’(a,) = p’ or .(ao) = p’, a’(a,) = p. 
Thus n A’ c {~ ‘ (a , ) } ,  whence 

ra 

Since T = u A, and T‘ = T,  \ T are complementary Bore1 sets in T,, 
m =  1 

AT + AT’ = AT,, 

and, because A c T and A’ c T‘ u {a’(uo)), 

AA + LA’ I AT,, 

where A denotes the Lebesgue outer measure on T,. Since AT, < 271, for one of the sets A, 
A‘, say for A,  we have LA I rt. 

For any E > 0 and 6 > 0 there is a covering {xi}?= of A with diam xi < 6 / r ,  and 

Then {a-’(xi))El is a covering of F* and, for any pair of points a, b in a-’(xi), 
N 

~ ( a ,  6) I rx  A(a(a), a@)) 5 r,  diam Ai < 6 

(for the first inequality use Aleksandrov’s convexity condition, [l], p. 47) and 
m 

N 
m c diam a-’ (Ai )  < rx  1 diam xi < rxAA + E .  

i =  1 i =  1 

This yields p lF*  < nr, and the proof is finished. 

Examples. The following examples illustrate the various possibilities for F ,  and also the 
fact that the upper bound in Theorem 4 is best possible. 

Consider a (planar) half-disc in lR3, take for a small E > 0 its inner parallel convex set 
D, at distance m, and then the outer parallel convex body (in IR3) of D, at distance 2.3. 

We obtained a C’ convex surface S containing a point x (which corresponds to the centre 
of the initial half-disc) and including a portion P isometric to a piece of a torus, so that 
F ,  is almost half the largest circle on the torus. For E + O f ,  we have p1(A u A’) --t 2n and 
p l F ,  - nr, --f 0. For fixed c and r + r x - ,  p l C ( x ,  r )  + 2p1F,. 

If we take the longest circular arc C, c D, and an arbitrary compact subset Cl of C, 
including the endpoints of C,, and then replace in the above construction D, by the convex 
hull of C:, we get a set F ,  congruent to (1 + 2.5) CL. 
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A similar but nonsmooth example in which pl(A u A‘) = 2n can be obtained as follows. 
Consider the convex hull of a torus. Cut it along a plane of symmetry orthogonal to the 
plane Il of its largest circle. Cut again one of the two resulting pieces along I7 and obtain 
two pieces of convex surface, bounded by closed Jordan curves having a common circular 
arc A on ll. By Aleksandrov’s gluing theorem (see [1], p. 315-320), these pieces can be 
glued together along the Jordan curve (isometrically) keeping A as a common arc, to form 
a closed convex surface with the desired properties. 

Further facts on farthest points 

Also topologically F, does not behave like the other circles C(x,  r). So a component of F, 
may never look like the digit 8 or like the letter A, 0 or P, while C(x, r )  with smaller r may 
well do so. For very small r, C(x, r )  must be a closed Jordan curve, while F, can never be that 
round. The following result presents another aspect of the answer to STEINHAUS’ question. 

Theorem 5. For any point x E S,  every component of F, is either a point or a Jordan arc. 

Proof. Suppose that the component K of F, has more than a single point. Then it has 
at least two non-cutpoints a, b (see [ll], p. 54). Clearly a and b are not isolated points, so 
we get as in the preceding proof the (not necessarily distinct) segments C;, C: joining a with 
x and the (not necessarily distinct) segments Cb, Cg joining b with x (see Figure 4, where 
Ca = Cb’ and ZL + C:). 

Let D be the domain with boundary 

CL v c,“ v C b  u c6’. 
Since a and b are not cutpoints, 

K \ ( a ,  b} c D . 
Let now c E K \ {a, b}. There are points a’, b‘ E K close enough to a, respectively b, to 
ensure that a’, b’ E C, and take them so that, if &, C:, are the segments from a’ to x and 
Cb,, CL, those from b‘ to x (met in the order Ch., EL,, C:,, C,”. around x), then 

c;, v cb’. v C b #  u Yb’. 

separates c from a and from b. 
Consider now the arc A c C ,  joining a’ with b’, found in the proof of Theorem 1, and 

let u E A \ {a’, b’}. The union of two of the segments from u to x separates a’ from b‘ (see 
the mentioned proof). So, if u 4 F,, then a’ and b lie in different components of F,, a 
contradiction. Hence A c K.  Suppose that for some point u E A \ {a’, b’} there is a third 
segment from u to x besides the two mentioned above. Then the two angles (out of three) 

determined by these three segments at u towards a’ and b‘ measure TC each, because u is a 
limit point of sequences of points in F, lying in the domains bounded by the corresponding 
pairs of segments; thus nothing remains for the third angle. This contradiction shows that 
each point u E A 1 (a‘, b‘} is joined with x by exactly two segments Cu, C;, and choose the 
notation so that ,Tir, Z;, Cb., Ci., Ci, C,“, are met in this order around x. Then 

u ( Z h u G ) = D .  
u c A  
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Fig. 4 

Indeed, the existence 
for any u E A would 
segments through D' 

of a point w in a component D' of D \ A, not belonging to Cu v Z; 
imply the existence of a point v E A joined with x by two distinct 
enclosing w between them; but then there were three segments from 

Since no interior point of a segment Cl or FL belongs to F,, the chosen point c must lie 
u to x, a contradiction. 

on A.  Moreover, 

(C: u Cy) n F ,  = {c> 

and CL LJ Cy separates a from b. Therefore c is a cutpoint of K. Hence K is a Jordan arc 
(see [ll], p. 54). 

Weak W iedersehensflachen 

Let S c IR3 be a convex surface and x E S. Let g : [0, I ]  -+ S describe a geodesic G starting 
at g(0) = x, with the arc-length as parameter, i.e., with s equal to the distance on G from 
x to g(s). Let z E S and 

d G , =  G + w+ 
be defined by d , , ( y )  = @(y, z). Suppose that, for some z E S, dG,= o g is non-increasing in a 
connected neighbourhood of 0 and let [0, a] be a maximal such neighbourhood (by inclusion), 
Then we call g(a) a first proximum of G from z. 

We call a weak Wiedersehensflache any convex surface S c lR3 such that for any point 
x E S there is some point z E S for which every geodesic starting in x has a first proximum 
from z precisely in z. In other words, going from any point X E S  along a geodesic we 
eventually reach another point of S depending on x but not on the chosen geodesic, such 
that the distance to that point never increases. 
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We also recall that the specific curvature of a domain D c S is w(D)/p,D, where o ( D )  is 
the curvature of D (see [l], p. 418). The surface S is said to have bounded specific curvature 
if the specific curvatures of all domains in S have a finite upper bound. 

We shall prove a statement lying in between HILBERT and COHN-VOSSEN’S conjecture 
and the (established) Wiedersehensflache conjecture of BLASCHKE, namely that every C3 
weak Wiedersehensflache is a sphere. 

Theorem 6. Every weak Wiedersehensji’ache with bounded specijk curvature is a 
Wiedersehensfliiche. 

Proof. Let S be a weak Wiedersehensflache, x E S,  and z be the point from the above 
definition, common to all geodesics starting at x. Since S has bounded specific curvature, 
there is some ro > 0 so that for every tangent direction z at z there is a segment of length 
ro starting at z in direction z (see [l], p. 420). 

Let G be a geodesic starting in x (see Figure 5). It contains z and let 1 be its length from 
x to z. Then the associated function dG,z  o g is non-increasing on [0, 11. 

Suppose 1 > e(x, z). Take a segment Z c G starting in z ,  of length less than ro. Consider 
the segment C, from x to U E Z .  If C, c G for every UEZ, then G is a segment and 
1 = e(x, z), a contradiction. Hence C, n G = (x, v> for some v E 2. The segment C, can be 
extended beyond v to a geodesic H with parametrization h, crossing G and ending at z so 
that dH,z  o h is non-increasing. Clearly G and H have distinct tangent directions at z. Let Z 
be the segment oflength ro starting at z in the same direction as H .  Then Z c H. We have 

d H . z ( u )  = d G , z ( v )  < r O  = dH.  z(z ’ )  3 

where z’ is the endpoint of Z different from z. Hence u + z’. But, Z and Z being different 
segments starting at z, necessarily u 4 2 ,  so that the monotonicity hypothesis on dH,z  o h 
is violated at u, z’. 

Hence 1 = e(x, z), and S is a Wiedersehensflache. 

Corollary. Each C 3  weak Wiedersehensji’ache is a sphere. 

This follows from Theorem 6 combined with GREEN’S result in [7]. 

Fig. 5 
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