How to Hold a Convex Body?

T. ZAMFIRESCU*

Mathematical Institute, University of Dortmund, 44221 Dortmund, Germany e-mail: zamfi@steinitz.mathematik.uni-dortmund.de

(Received: 24 November 1993)

Abstract. Convex bodies are often used for mathematical tests. They occasionally try to escape. Can the testing mathematician hold them still by using a circle? Rarely not.

Mathematics Subject Classification (1991): 52A15.

The Problem and the Answer

There have been various ways in which people tried to carry a convex body. For a trip by train a stiff bag is probably appropriate. This means a polytope and, to get an economical one, its facets must touch the convex body. Such approximating polytopes have been often considered in the literature (see, for example, P. Gruber's survey [5]). If, instead, the total length of the edges should be minimal then, in the case of the unit ball, the polytope must be a cube, as Besicovitch and Eggleston showed [1].

For a walk in fresh air a cage might be the right holding instrument. Coxeter [4] asked about its minimal total length in the case of the unit ball and the question was investigated by Besicovitch [3] and Valette [6].

For a visit on a market the use of a net might be appropriate. The minimal length in the case of the unit ball was determined by Besicovitch [2].

Can a very simple instrument such as a (rigid) circle be used to hold a convex body? Certainly not in the case of a ball. More generally, it cannot be used to hold any ellipsoids, (bounded) circular cylinders, or other usual convex bodies. F. Caragiu asked: 'Do there exist any convex bodies which can be held using a circle?'

We shall see here not only that these convex bodies exist, but also that they appear to form a large majority!

Let \mathcal{B} be the space of all convex bodies and \mathcal{C} the space of all circles in \mathbb{R}^3 , both endowed with the usual Pompeiu–Hausdorff metric δ .

Mathematically, for a convex body B to be held by the circle C means that $C \cap \text{int } B = \emptyset$ and, for some number $m \in \mathbb{N}$, there is no continuous mapping $f : [0, 1] \to C$ such that f(0) = C, $\delta(f(0), f(1)) > m$ and, for all $t \in [0, 1]$, f(t) is congruent with C and $f(t) \cap \text{int } B = \emptyset$.

^{*} The final part of the work for this paper was done during the COST mobility action CIPA-CT-93-1547 and supported by the European Community.

THEOREM. The convex bodies which cannot be held by a circle form a nowhere dense subset of \mathcal{B} .

Prerequisites

Before giving a proof to our theorem we formulate and prove a lemma.

Let C_0 be a circle and $a_1, b_1, c_1 \in C_0$ be the vertices of an acute triangle. Now let $a_i, b_i, c_i \in C_0$ (i = 2, 3) be other six points such that the triangles $a_i b_i c_i$ be similar to $a_1 b_1 c_1$ and

$$||a_i - a_{i+1}|| = ||b_i - b_{i+1}|| = ||c_i - c_{i+1}|| = \varepsilon > 0 \quad (i = 1, 2).$$

The number $\varepsilon < 1$ is chosen so small that the triangle $a_i b_j c_k$ be acute for any indices i, j, k. A small rotation leaving C_0 invariant plus a small translation in a direction perpendicular to the plane of C_0 can be chosen such that, for the new positions a'_i, b'_i, c'_i of a_i, b_i, c_i , the triangles $a'_i a_i a_{i+1}, b'_i b_i b_{i+1}, c'_i c_i c_{i+1}$ be equilateral (i = 1, 2).

Consider the polytope

$$Q = \operatorname{conv}\{a_1, a_1', a_2, a_2', a_3, b_1, b_1', b_2, b_2', b_3, c_1, c_1', c_2, c_2', c_3\}$$

and the circle Γ circumscribed to the intersection of Q with the plane P situated at mid-distance between the plane of C_0 and that through a'_i , b'_i , c'_i (i = 1, 2).

LEMMA. The polytope Q can be held by a circle coplanar and concentric with Γ , disjoint from Q.

Proof. First, we claim that each circle Γ^{\dagger} congruent with Γ and satisfying

$$0<\delta(\Gamma,\,\Gamma^\dagger)\leq \frac{\varepsilon}{4}$$

meets int Q. To prove this, let k be a congruence mapping Γ into Γ^{\dagger} and remark that each edge in the set

$$\mathcal{E} = \bigcup_{i=1}^{2} \{ a_i a'_i, \, a'_i a_{i+1}, \, b_i b'_i, \, b'_i b_{i+1}, \, c_i c'_i, \, c'_i c_{i+1} \}$$

meets the plane k(P) inside of conv Γ^{\dagger} if $\Gamma^{\dagger} \cap \operatorname{int} Q = \emptyset$.

The orthogonal projection Γ' of Γ^{\dagger} onto P is an ellipse whose long axis equals the diameter of Γ . The orthogonal projection of $\cup \mathcal{E}$ on P consists of three (congruent) broken lines circumscribed to Γ . Any halfcircle of Γ meets at most two of these broken lines (remember the initial choice of the points a_i , b_i , c_i , a'_i , b'_i , c'_i).

Now, either

(i) $\Gamma = \Gamma'$

or

(ii) $\Gamma \cap \operatorname{conv} \Gamma'$ is contained in a half of Γ .

In case (i), k(P) is parallel to, but different from, P. But $k(P) \cap Q$ has a circumscribed circle larger than, and concentric with, Γ^{\dagger} . This implies $\Gamma^{\dagger} \cap \operatorname{int} Q \neq \emptyset$.

In case (ii), $\operatorname{conv} \Gamma'$ does not meet one of the three broken lines mentioned above, which implies that $\operatorname{conv} \Gamma^{\dagger}$ does not meet each edge in \mathcal{E} and, therefore, $\Gamma^{\dagger} \cap \operatorname{int} Q \neq \emptyset$.

Hence our claim is verified. Now, suppose there exists a sequence $\{\Gamma_n\}_{n=1}^{\infty}$ of circles converging to Γ , all coplanar and concentric with Γ such that, for no n, the polytope Q can be held by Γ_n . Choose m = 1. There is, for each n, a path $f_n : [0, 1] \to C$ with the required properties. Since $\delta(\Gamma_n, f_n(1)) > 1$, there is some number t_n such that $\delta(\Gamma_n, f_n(t_n)) = \varepsilon/4$. Some subsequence of $\{f_n(t_n)\}_{n=1}^{\infty}$ must converge and let Γ^* be its limit. Clearly, the circle Γ^* is congruent to Γ , $\Gamma^* \cap \operatorname{int} Q = \emptyset$ and $\delta(\Gamma, \Gamma^*) = \varepsilon/4$. Here we use the assertion claimed above with $\Gamma^{\dagger} = \Gamma^*$, and a contradiction is obtained. Hence Q can be held by all circles in a whole neighbourhood of Γ in $\{C \in \mathcal{C} : C \text{ is coplanar and concentric with } \Gamma$ and $C \cap \operatorname{int} Q = \emptyset$. Just select one of these circles different from Γ and the lemma is proved.

The proof

Proof of Theorem. Let \mathcal{O} be an open set in \mathcal{B} . Choose a convex body $B \in \mathcal{O}$. Select a section S of B such that the circle C circumscribed to S be maximal. Then the cylinder U with C as orthogonal section encloses int B and $B \cap U \subset S$. Indeed, together with any point in $B \setminus (S \cup \text{int conv } U)$ we would find another one or two in $S \cap C$ determining a larger circumcircle.

If $a \in C \cap B$, then either (i) the diametrically opposite point $a^* \in C$ belongs to B or (ii) there is an acute triangle *abc* with $b, c \in C \cap B$.

Now consider a polytope $L \in \mathcal{O}$ approximating B such that

(*) in case (i) $L \cap C$ consists of a^* plus two vertices a^+ and a^- , symmetrical with respect to the line through a, a^* and close to a,

(**) in case (ii) $L \cap C = \{a, b, c\},\$

(***) all vertices of L except for a^+ and a^- (in case (i)) lie in B.

Now remember the circle C_0 considered prior to the lemma, put $C_0 = C$ and take the points a_1 , b_1 , c_1 from there to be a^+ , a^- , a^* in case (i), or a, b, c in case (ii). The polytope Q constructed there will now be used in the following way. We keep the circle C_0 circumscribed to one facet of Q identified with our circle C and take the convex hull K of $L \cup Q$. If the number ε used to construct Q is small enough then $K \in \mathcal{O}$, because $\lim_{\varepsilon \to 0} Q \subset L$ and, consequently, $\lim_{\varepsilon \to 0} K = L$.

The lemma provides a circle C' disjoint from Q, with which Q can be held. Let γ be the angle between any triangular facet of Q and aff C. Since $U \cap L \subset C$, L lies in a circular cone V over C with the apex on the same side of aff C as Q. This and $\lim_{\varepsilon \to 0} \gamma = \pi/2$ imply $C' \cap V = \emptyset$ and therefore $C' \cap K = \emptyset$, for ε sufficiently

small. Now take a parallel body K_{ν} of K at distance ν . If ν is small enough, $C' \cap K_{\nu} = \emptyset$ too. Consider a neighbourhood \mathcal{N} of K_{ν} such that $C' \cap D = \emptyset$ and $K \subset D$ for every $D \in \mathcal{N}$. Then, obviously, each $D \in \mathcal{N}$ includes Q and therefore can be held by C'.

This ends the proof.

References

- 1. Besicovitch, A. S. and Eggleston, H. G.: The total length of the edges of a polyhedron, *Quart. J. Math. Oxford Ser.* (2) 8 (1957), 172–190.
- 2. Besicovitch, A. S.: A net to hold a sphere, Math. Gaz. 41 (1957), 106-107.
- 3. Besicovitch, A. S.: A cage to hold a unit-sphere, *Proc. Sympos. Pure Math.* Vol. VII, Amer. Math. Soc., Providence, RI, 1963, pp. 19–20.
- 4. Coxeter, H. S. M.: Review 1950, Math. Reviews 20 (1959), 322.
- 5. Gruber, P. M.: Aspects of approximation of convex bodies, in P. Gruber and J. Wills (eds), Handbook of Convex Geometry, Elsevier Science Publishers, 1993.
- 6. Valette, G.: A propos des cages circonscrites à une sphère, Bull. Soc. Math. Belg. 21 (1969), 124-125.