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§1. Every homogeneous convex body in IRd(d ≥ 2) put to sit on a horizontal hyperplane
finds a position of stable equilibrium. A cube has such 2d such positions and an ellipsoid
with pairwise distinct axis–lengths has 2. How many positions of stable equilibrium have
most convex bodies?

In term ”most” is understood in the Baire category sense. For various other results
on most convex bodies, see [3].

§2. Let B denote the Baire space of all convex bodies in IRd. B is equipped, as usual,
with the Pompeiu–Hausdorff metric.

For M ⊂ IRd, aff M and conv M denote the affine and the convex hull of M , respec-
tively.

For ω ∈ Sd−1, let D(ω, r) denote the open ball of all points in Sd−1at distance less
than r from ω.

Let B be a convex body, bd B its boundary, c(B) its centroid. We denote by δB(ω)
the distance between c(B)and the point of bd B seen in direction ω ∈ Sd−1from c(B).

To be a local minimum for δB is, of course, a sufficient condition for a point in Sd−1to
correspond to a position of stable equilibrium for B.

§3. We show here that in most cases there are many sitting positions.

Theorem 1. Most convex bodies have infinitely many positions of stable equilibrium.

Proof. Let {σi : i ∈ IN} be a dense set in Sd−1and put

Bi,n = {B ∈ B : δB has precisely one local minimum in D(σi, n
−1)} .

We show that Bi,n is nowhere dense in B, for any i and n.
Let 0 ⊂ B be open. We have to find an open set N ⊂ 0\Bi,n. This is easily done if

0 ∩ Bi,n = ∅, so suppose B ∈ 0 ∩ Bi,n. We approximate B by a polytope P ∈ 0 admitting
a point ω0 ∈ D(σi, n

−1) as a local minimum of δP . When choosing P we also arrange
that the line L through c(P )parallel to ω0 does not meet the (d - 2)–skeleton

∑
of P . Let

F0 be the facet containing the point x0 = c ( P ) +δP (ω0)ω0 and F1 be the other facet
meeting L; put {x1} = F1 ∩ L.

Let F ′
0, F

′
1 be two congruent regular (d - 1)–simplices disjoint from

∑
, and F ′

i ⊂ Fi

and c(F ′
i ) = xi(i = 0, 1). We chop off thin slices from P using 2d hyperplanes through

the facets of F ′
0, F

′
1, such that

• the resulting polytope P ′ has F ′
0, F

′
1 as facets instead of F0, F1,

• the polyhedron P ∗ obtained as intersection of all subspaces containing P where
boundaries include facets of P distinct from F ′

1 be a polytope,

• the points c(P ′)and c(P )be close enough to guarantee that the



projection x′0 of c(P ′)on aff F ′
0 lies in int F ′

0 and that, x′1 being the intersection of the
line through x0 and c(P ′)with aff F1, d || x1 − x′1 || is smaller than the distance from x1

to any facet of F ′
1.

The main idea of the proof is the following construction of a polytope P ′′ close to P ′

and having the same centroid, by adding to P ′ two simplices based on F ′
0 and F ′

1. Let
xαbe a point collinear with x′0 and c(P ′)such that || xα − x′0 ||= α, xα 6∈ P ′, and P ′ ∪ S0

is convex, where

S0 = conv ({xα} ∪ F ′
0) .

The line L′ through c(S0) and c(P ′)intersects aff F ′
1 in a point between x1 and x′1. Let

yα∈ L′\P ′ be such that v(yα) ∈ P ∗ and ∆(yα) is maximal; here v(y) = x1 + d(y−x1) and
∆(y) denotes the distance from y to aff F ′

1. We see that ∆0 > 0, where

∆0 = lim
α→0

∆(yα) .

Because we may consider a sufficiently small number α > 0, such that

lim
α→0

αd−1 || c(S0)− c(P ′) || . || yα − c(P ′) ||−1= 0 ,

αd−1 || c(S0)− c(P ′) ||< ∆0 || yα − c(P ′) || .

Then we can find a point y ∈ L′ between x′′1 and yα such that

(∗) αd−1 || c(S0)− c(P ′) ||< ∆(y) || y − c(P ′) || .

We have

v(y) = x1 + d(y − x1) ∈ P ∗ ,

which guarantees that convexity is preserved when S1 = conv ({v(y)} ∪ F ′
1) is added

to P ′ ∪ S0 : let P ′′ be the resulting polytope. Clearly, y = c(S1).
To show c(P ′) = c(P ′′) we remark that

(i) the centroid c(S0), c(P ′) and c(S1) are collinear,

(ii) vol S0 || c(S0)− c(P ′) ||= vol S1 || c(S1)− c(P ′) ||.

Remark (ii) follows from

vol S0 = vol conv({xα} ∪ F ′
0) = αd−1volF ′

0 ,

vol S1 = vol conv({v(y)} ∪ F ′
1) = ∆(y)volF ′

1 ,

volF ′
0 = volF ′

1 ,

and (*). If α is small enough, P ′′ ∈ 0 and the orthogonal projection cF of c(P ′) onto
aff F lies in int F and || cF − c(P ′) ||−1 (cF − c(P ′)) ∈ D(σi, n−1) for any facet F of S0.



Now, obviously, δP ′′ has d local strict minima in D(σi, n−1. Thus, for a whole open
neighbourhood N of P ′′ in 0 and for each convex body B ∈ N , δB has at least d local
minima in D(σi, n−1. Since d ≥ 2, this implies N ⊂ 0\Bi,n.

Obviously
⋃∞

i,n=1 Bi,n contains each convex body B such that δB has an isolated local
minimum. Hence, for most convex bodies B ∈ B, δB has no isolated local minima, which
implies that δB has infinitely many local minima and B can sit on a hyperplane in infinitely
many ways.

§4. Suppose now we have a travel bag with the shape of a convex surface, which we
intend to fill with various clothes, games, bottles, and other useful things. For different
distributions of the useful things, the bag may sit in quite different sets of positions,
because the corresponding centre of mass distribution varies. This small section is devoted
to this case.

We consider mass distributions as different if and only if the corresponding centres are
distinct. The following result is known.

For most convex bodies and most points z ∈ B, the distance from z to points in bd B
has a function δB,z defined on Sd−1 has infinitely many local minima.

Indeed we proved in [2] that, for most B ∈ B and z ∈ B, there are infinitely many
normals of bd B passing through z. This was done by showing that δB,z has infinitely
many local maxima, for most B and z. After only common sense changes applied to the
proof in [2], the above result — i. e. with minima instead of maxima — is obtained.
Similarly, in [1] it is shown that, for most B ∈ B and infinitely many z ∈ B, there are
uncountable many normals of bd B passing through z.

These results suggest that there might be infinitely (uncountably?) many positions
of stable equilibrium for many distinct mass distributions. We point out that a mass
distribution, which can be identified with the corresponding centroid, has to be understood
as a (continuous) function defined on the entire space B.
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