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Abstract

Toeplitz graphs are graphs whose adjacency matrix is Toeplitz. Infinite Toeplitz graphs
having no loops and no multiple edges can thus be defined by an infinite 0-1
sequence. We characterize bipartite such Toeplitz graphs by introducing the concept
of odd T-cycles and by using the base-circuit language of matroid theory.
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1) Introduction

An nxn matrix A=(aij) is called T_o_e_gm;, if ajj=a(j+1)(j+1) for ij=1,...,n. Since any
diagonal of such a matrix contains identical elements it is uniquely determined by its
first row and column and therefore easy to memorize. Beyond this straightforward
advantage there are other particular applications of these matrices in computer
science (cf. Aho et al. [1, p.249], JaJa [7] ) and also in mathematics or physics.

A Toeplitz graph is a graph whose adjacency matrix is Toeplitz. Not much is known to
date about structural and algorithmic properties of these graphs. Connectivity
properties have been studied by Garfinkel et al. [6] , Burkard and Sandhoizer [3], van
Doorn [5], and hamiltonian properties by Medova and Dempster [8], van der Veen et al.

[9] and van Dal et al. [4].

The Toeplitz graphs we consider in this paper are infinite, symmetric ,without loops

and muitiple edges; they will be denoted by T=(N. E). Consequently, any such graph
is uniquely defined by a sequence from {0,1}N, whose first element is 0 (throughout

the paper we assume that this is the case for the sequences we study.). Given two

such sequences A and B we say that A dominates B (or A2B) if A;>B; for all ieN. We
will make heavy use of the concept of an odd T-cycle, i.e. a sequence from {0,1}N,
which induces 21 odd cycles in its associated Toeplitz graph and whose number of
1-entries is minimal with respect to this property. Our main result consists in
characterizing the bipartite graphs among the Toeplitz graphs under study by the
non-domination of odd T-cycles. We also fully describe the maximal bipartite such
graphs. We think that our structural results might help to also obtain algorithmic resuits,

for instance in relation with the max-cut problem over such graphs.

It will become clear from the structure of odd T-cycles that the finite case cannot be
treated the same way but instead requires some special attention. This situation and

conditions for planarity of Toeplitz-graphs are the subject of a companion paper.
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2) Bipartite Toeplitz graphs

For ae N let B2 denote the {0,1}N-sequence (consisting of o 0's first, then of a 1 etc.)

(0..010..00..010..00..010..0 ...),
o a-1 a a-1 (01 a-1

and let T denote the associated Toeplitz graph. As illustrated in Figure 1, T® is the

disjoint union of complete, bipartite subgraphs. The nodes N of T® can be classified

according to the remainder r mod 20, i.e.
i) 0<sr<a and i) a<r<2a.
More precisely, a node ie N is either
i') an even multiple of a plus the remainder rwith0<r<a ,

or

i) an odd multiple of a plus the remainder rwith0<r<o .

=0
20 a
4q 3o
6a 5a
r=1
1 o+1
20+1 3a+1
40+1 Sa+1
r=o-1
a-1 20-1
3o-1 40-1

S5c-1 60-1

Figure 1
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Observe that if a=1 the graph T® reduces to a (single) complete, bipartite graph over

the nodes 2N and 2N-1.

Proposition 1

If o=B mod 2B then B < BB .
Proof:

Consider B® and subdivide it according to the condition given. W

Proposition 2

Let Be N, B=2M for all me{0,1,2,...}. Then there is an o with a=2M" for some

m'e{0,1,2,...} such that BB <B.

Proof:
Obvious from the the fact that B contains an odd divisor and from the condition given in

Proposition 1. W

The B® with a a power of 2 are thus the non-dominated among all these sequences.
We may further ask whether these particular B* are also maximal w.r.t. bipartiteness.
For this we need the concept of an "odd T-cycle’, a Toeplitz-analogon to odd cycles,

that we are now going to introduce.

3) Odd T-cycles

Let us consider the {0,1}N-sequence C defined as follows for leN, ke N and ie{1,...k}:

= (0...0. 1 Gure o005 @55.550 0 ... )
i 21(Kk-i)+1-1 (i-1)I ;

We call such a sequence C an odd T-cycle, the number 2ki+1 its length, and we

denote the associated Toeplitz graph with TC.
Observe that odd T-cycles contain exactly two 1-entries and ,thus, give rise to another

(infinite) symmetric graph, whose study could be of interest.



Lemma 1

TC contains an odd cycle.

Proof:

Let us first illustrate two simple instances:

2kl+1

1 3l+1

I+1 2l+1

a) the case i=1

[+1 (k+2)I+1

(k+1)l+1 a1

(k+3)I+1

(k=-1)1+1

2kl+1

b) the case i=k

Figure 2

c) the general case:

We suppose that 2k+1=rg mod i.

123
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c1) Ifrg=0, the there is a cycle in TC of total length (2k+1)/i , which is odd.

c2) For rg>0 let Icm denote the least common multiple of rg and i and let

lcm=arg=bi with a and b prime to each other. Then we can identify within TC a

cycle T of total length [(2k+1-rg)/i] lem/rg + lcm/i, as shown in Fig.3:

1

_—

/ \ | length [ (2k+1)/i]
length [ (2k+1)/i] 1/ \
/ \
= length L (2k+1)/il

Case 1:

Case 2:

Figure 3: the cycle I'

i is even:
Then lcm must be even and a, too, because rg is odd as

follows from 2k+1=rg mod i . This implies that the total length of T

equals [(2k+1-rg)/i] a + b, and since a is even b must be odd

and T is of odd length.

i is odd:
Subcase 2.1: lcm is also odd. Then b must be odd and so are a and
ro. The latter implies (2k+1-rg)/i to be even, and therefore the total

length of T is odd.

Subcase 2.2: Icm is even. This implies b to be even and a, ro to be

odd, even, respectively. Hence (2k+1-rg)/i is odd and, altogether, T is

shown to be of odd length. W
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Observe that changing one of the two 1's to 0 within such an odd T-cycle C leads to a
sequence inducing a bipartite Toeplitz graph. Therefore, C (i.e. its number of 1-entries)
is minimal w.r.t. inducing an odd cycle in TC. Also note that more than one such odd
cycle can be induced in TC. Finally, observe that to fully induce these odd cycles it is
(in general) necessary that TC contains at least 2kl+1 nodes. This is always the case

for the node set N. However, if the node set is finite, the situation needs special
attention. A companion paper is devoted to the study of bipartiteness (and planarity) of

finite Toeplitz graphs.

We will now ask whether the number of 1-entries of a sequence B® ,with a=2M and
me{0,1,2,...}, is maximal w.r.t. inducing a bipartite graph (we know already that BQ is

. not properly dominated by any of the BB, e N-{1,2,4,8,...)).

For this let B{% denote B® with position j (jza+1, 3a+1, Sa+1,...) changed from 0 to 1.

We distinguish 4 main cases:

j
Case 1: a=1ie. Bja=(010101...0111010...):

with I=1, k=i=j-2 there is an odd T-cycle dominated by B;®.

Case 2:j=2pmod 2a, 0<p<a-1,j2o+2:

with I=1, i=a and k=(j+a-2)/2 there is an odd T-cycle dominated by Bj*.

Case 3: j=2p+1 mod 2a, 0<p<a-1,j2a+2 and p#o/2:

subcase 3.1: p=0 (observe that this case also covers the situation a=2):

with I=a, i=1 and k=(j-1)/2a there is an odd T-cycle dominated by Bj*.

subcase 3.2: 1 <p < a-1. Let p=2"t with t odd. Then with [=2r+1, j=2m-(r+1) and
k=(t-1)/2+2M--2 (2B+1), where  comes from j=(2p+1) + B 2a, there is

an odd T-cycle dominated by Bj%.
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Cased:2<j<a:
subcase 4.1: a-j =2p, pe{0,1,2,...}
with I=1, i=j-1 and k=(0+j-2)/2 there is an odd T-cycle dominated by Bja.

subcase 4.2: o-j =2p+1,pe{0,1,2,..}:

- if p is even then with 1=2, i=(j-1)/2 and k=(a-p)/2 we are done;
-if pis odd let p+1=21, t odd. With I=2r+1, j=2m-(r+1) and
k=(t-1)/2+2M-T -1 there is an odd T-cycle dominated by Bja.

This completes the proof of

Lemma 2

A sequence B with ae{1,2,4,...} is maximal w.r.t. inducing a bipartite Toeplitz graph.

4) The main result

We will now proceed to show that the B%, a=1,2,4,8,... , are the only 0-1 sequences

that induce bipartite Toeplitz graphs and that are not properly dominated by any other

such sequence. For this let us consider a sequence Ie(0,1}N which we suppose to

induce a bipartite Toeplitz graph. By Lemma 1, | cannot dominate an odd T-cycle.

Suppose that | is not dominated by any of the B%, a=1,2,4,8,... . To obtain a

contradiction we will exhibit an odd T-cycle dominated by I. Let j4 and jo be the

indices of the first and second 1-entry in |, respectively, and let y=j1-1, 8=j2-j1-1, as

indicated in Figure 4:

Figure 4
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& must be odd.

Proof:
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Suppose 8=2p, pe{0,1,2,...}. Then with k=i+p, I=1 and i=y we can exhibit an odd

T-cycle dominated by |. W

Consequently, for some ae N, |can be written as

Figure 5

a) We will first show that for our | there exists B, B=2M with me{0,1,2,...} such that

=0 mod B and y=B mod 2B; in other words | has the following form:

i 2
| = (0.0 0..0 ... 0..0 10.0 0.0 ...0.01 ... )
B 2B 2 B B p
Figure 6

So let us suppose that | is not of this form.

Proposition 4
If =2t with t odd and if y%B mod 2 for any divisor B of a then y=0 mod or+1,
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Proof:

tis odd and so are all of its divisors. It is therefore sufficient to assume that y%p mod 28

for p=1,2,...,2". But then the only remaining case is y= 0 mod 2r+1, m

It is for this particular case that we are now going to exhibit an odd T-cycle dominated

by I. Let y=2M*1p for some pe N. Then we choose 1=2M+1, i=p and k=p+(t-1)/2 to obtain

2l(k-i)+l-1 = 2r+1(2(k-p)+1)-1 = 2r+1t-1 = 201, as required.

We can thus complete part a) with the conclusion that if | induces a bipartite Toeplitz

graph then there is a B with B | & and y=B mod 2B. Moreover, B can be chosen to be a

' power of 2.

b) So let B=2M for some me{0,1,2,...}, let j3 be the index of a third 1-entry in our

sequence |; we set e=jz-j1-1.

We assume that e£2M+1.1 mod 2M+1 and that e22M+1, Then either £=0 mod 2 or e=1

mod 4 or ... or e=2M-1 mod 2M+1, For any of these cases we will now exhibit an odd

T-cycle which is dominated by |, the desired contradiction.

So let £=(29-1)+p29+1 for pe N and qe{0,1,...,m}. We choose 1=29, i=2M-q and k=i+p.
Then we have

il=2M and 2l(k-i)+l-1 = 29+1p+29-1 =,

which yields an odd T-cycle dominated by .

Altcgether we have shown:
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Theorem

An infinite 0-1 sequence | induces a bipartite Toeplitz graph
if and only if

| does not dominate an odd T-cycle
if and only if

| is dominated by one of the sequences B%, where ae{1,2,4,8,...} .

5) Conclusion and final remarks

As already mentioned in the introduction, we feel that studying (infinite or finite)
Toeplitz graphs might not only lead to structural results: several types of optimization
problems such as the stable set problem, the matching problem or the max-cut
problem might be faster solvable for these graphs.It could aiso be helpful within this

context to study the facial structure of related polyhedra.

As for bipartiteness in finite Toeplitz graphs and results on planarity we refer the reader

to our companion paper currently being written.
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