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Abstract. This paper discusses conjugate points on the geodesics of convex surfaces. It establishes 
their relationship with the cut locus. It shows the possibility of having many geodesics with conjugate 
points at very large distances from each other. It also shows that on many surfaces there are arbitrarily 
many closed geodesic arcs originating and ending at a common point. To achieve these goals, Baire 
category methods are employed. 
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1. Introduction 

In this paper, we propose a new definition for the notion of  a conjugate point to a 
point x of  an arbitrary closed convex surface, along a geodesic starting at x. Rinow 
in [7] and Kunze in [5] present two further definitions of  conjugacy. The exact 
mutual relationship between the three notions will not be investigated here. They 
all correspond to the differential-geometric notion of  'first conjugate point' .  Note 
that the one in [7] extends to second, third, etc., conjugate points too. Ours seems 
to be the simplest. 

We examine the relationship between the set of  conjugate points to x and the 
cut locus E~ of x, i.e. the set of  all endpoints of  maximal (by inclusion) segments 
starting at x. 

Then we show that, in the sense of  Baire categories, on most convex surfaces 
there are densely many points x and geodesics G starting at x, with conjugate 
points arbitrarily far (on G) from x. For some of  these points x, G can even be 
chosen to have no self-intersections! This strengthens Theorems 1 and 2 from [ 14]. 

Finally it is shown that, on most convex surfaces, there are points x with 
arbitrarily many closed geodesic arcs at x. This result complements Theorem 3 in 
[14]. 

The behaviour is in both cases very 'irregular' from the differential-geometric 
point of  view, even impossible in the analytic case. But it fits well to the multitude 
of  exotic properties already discovered for most convex surfaces (see, for example, 
[8]-[15] or the surveys [2], [16]). 
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Let S be a convex surface in ~3. A geodesic is the image of an interval I C 
through a continuous mapping c : I ~ S, such that every point in [ has a 
neighbourhood N in I such that c is an isometry on N and c(N) is a segment, i.e. 
a shortest path in S between two points of S. If I = ~ and c is periodic, then c(I) 
is called a closed geodesic. If I is a compact interval [a, hi, then c(I) is called a 
geodesic arc. If, moreover, c(a) = c(b), then c(I) is said to be a closed geodesic 
arc at c(a ). 

We denote by ),C the length of the arc C C S. 
The space of all convex surfaces (always closed here) in ~3, endowed with the 

usual Pompeiu-Hausdorff metric, is a Baire space, and 'most' means 'all, except 
those in a set of first Baire category'. 

2. On Conjugate Points 

Let S be a convex surface and x E S. We consider an arbitrary (but nonempty) 
maximal (by inclusion) geodesic G containing x. Let y be a point of G such that, 
for some neighbourhood A/" of a subgeodesic Gy of G from x to y, the minimal 
length of arcs from x to y in A/" is realized uniquely by Gy. (Here, the space of 
arcs is endowed with the usual compact-open topology.) The existence of such a 
point y is guaranteed by the definition of a geodesic in conjunction with the basic 
property that a proper subarc of a segment realizes uniquely the minimum distance 
between its endpoints. We call such an arc Gy a length-minimizing arc of G. 

Let + be the direction from x to y on G (corresponding to increasing length on 
Gy), and - the opposite one. Define, according to +, an order on G and let 

z+ = sup{y E G : Gy is length-minimizing}, 

allowing for z+ the value +o~ too (which will never occur if G is a geodesic arC). 
We call z+ the conjugate (point or symbol) of x on G in direction +. 

Now, define c+ to be the mapping x ~ z+ and, analogously, the mapping c_. 
Also, let 

lim z _  = 
x - + z +  - -  

The limit exists because e_, like c+, is a monotone increasing function. 
The couple z_, z+ is called a conjugate pair. In particular, a conjugate pair of 

points on G is the couple of endpoints of a maximal (by inclusion) geodesic arc 
in G such that each proper subarc is length-minimizing. Clearly, c_(u) < z_ and 
c+(u) >_ z+ for any point u between z_ and z+ on G. 

To illustrate these notions, let us consider the following example. Let G be an 
infinitely long geodesic starting at the vertex x of a polytopal surface. In this case, 
c+(y) = q-oc for any y E G and c_(y) = x for any y E G \ {x}. So, x and +co 
are conjugate to y, but only x, +oc is a conjugate pair. 

A geodesic arc whose endpoints form a conjugate pair will be called stretched. 
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The set of all points conjugate to x along the various geodesics starting at x is 
denoted by Dx. 

For any point x E S, the cut locus E~: C S is defined to be the set of all endpoints 
different from x of maximal (by inclusion) segments starting at x. An important 
subset of the cut locus is the set C~ of all points multijoined to x, i.e. joined by 
at least two segments with x. The following theorem establishes a remarkable 
connection between these sets E~, Cx and D~. 

THEOREM 1.All points in E~ \ Cx are conjugate to x. 
Proof If Ex = C'x there is nothing to prove. So, let y C E~ \ C~. There is a 

single segment E from x to y. If there is no geodesic extending E beyond y then, 
trivially, y is conjugate to x. Suppose now that some geodesic I" D E goes beyond 
y. Clearly, the conjugate c+(x) of x on r is not interior to E. Let z E 1" \ E be 
close to y and consider a segment E~ from x to z. This segment is shorter than the 
subarc of F from x to z, because E cannot be extended as a segment beyond y. For 
z ~ y, we have Ez ~ E, since E is the only segment from x to y. 

Let now v C F \ E, denote by r~ the subarc of F from u E 1  ̀to v, and consider 
an arbitrary neighbourhood N" of 1"~. For z E 1"~ close enough to y, Ez U rz  
belongs to N" and is shorter than 1`z. Therefore c+(x) = y. 

In [5] Kunze proves this same result using his definition of conjugate points. 

In our everyday life, Ez is a geometrically realized tree with finitely many 
'nodes' (i.e. points at which E,~ is not locally homeomorphic to a line), and E~ \ Cx 
is exactly the (very scarce) set of all nodes of degree 1. But this does not happen 
frequently. Instead, typical is the following quite unexpected, almost 'paradoxal' 
behaviour. 

THEOREM 2.On most convex surfaces S, for  any point x C S, most points of  S 
are conjugate to x and lie in its cut locus, more precisely Ex \ Cz is residual in S. 

Proof By Theorem 1, E,~ \ Cx consists of points conjugate to x. Clearly, the set 
E of all endpoints of S is a subset of Ex. By Theorem 1 in [10], E is residual in S 
for most convex surfaces S. 

For every convex surface S, the set C~ is of first category, by Theorem 1 in 
[15]. It follows that, for most S, E~ \ C~ is residual in S. 

Note that, by Theorem 2, the set E~ \ C~ may well be uncountable (compare 
[5], p. 201). 

3. On Conjugate Pairs 

In this section, we present a general convergence theorem on conjugate pairs and 
then apply it in the case of most convex surfaces. The convergence theorem is a 
strengthening of Lemma 2 in [14]. 

Let d$ denote the intrinsic metric of the convex surface S. 
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THEOREM 3. Let Po be a length-minimizing arc on a geodesic of  the convex 
surface S. I f  Po has endpoints xo, Yo, Sn are convex surfaces, Xn, y~ E 5;~ 
(n E I~), Sn --+ S, xn --+ xo and Yn --+ YO when n ~ cxD, then there are stretched 
geodesic arcs F~ E S~ with endpoints xn, Yn such that Fn -+ Fo. 

Proof Consider a point in the bounded component o f ~ 3 \  S as centre of a central 
projection p. For n large enough (n ___ ra, say), p induces a homeomorphism h,~ 
from S~ to S, according to which ds, --+ ds. 

There is a neighbourhood A/" of Fo in the space of arcs on S from xo to Yo, 
such that Fo is shorter than any other member of A/'. Let N = t3A/" C S. Clearly, 
xo, Yo E int N (the interior relative to S). 

Consider a line-segment L C ~2 of endpoints x, y, as long as Fo, and an open 
rectangle R D L. 

Let f • R --+ N be a mapping such that f ( L )  = Fo, f ( x )  = xo, f ( y )  = Yo 
and each point of R has a neighbourhood V for which f l v  is a homeomorphism. 
Consider the metric d of R defined by 

d(u, v) = i~f ~ f(J)~ 

where J are arcs joining u to v in R. Now, clearly, f is a local isometry o n / L  
For each n >_ m and any points u, v E R joined by arcs J C R, let 

d~(u, v) = inf Ah~l ( f ( J ) ) .  
J 

It is easily checked that dn is a metric in R and h~ 1 o f is a local isometry from 
(R, dn) to (Sn, dsn). Since ds~ -~ ds, we have d~ --+ d too. 

' closest to x and in f - l ( h ~ ( y ~ ) )  a Choose in the set f - l (h ,~(x~))  a point x,z 
point y~ closest to y. Since h~(x~) --+ xo and f is locally isometric, we must have 

I / x n --+ x and, similarly, y~ ~ y in (R, d). 
' ' (R, dn) and put F~ = h~l ( f (P~) ) .  Let I?~ be a shortest arc from x~ to y~ i n  

! t From x~ --+ x, yn --+ y and d~ --+ d, we conclude that F~ ~ L and F~ ~ F0. 
Thus, starting with some index m ~ > m, every arc F'~ lies in R (n >_ m~). For 
these indices, F~ realizes the minimum length of all arcs from x~ to y,~ in a 
certain neighbourhood (corresponding through h~ -1 o f to a neighbourhood of F~ 
consisting of curves lying in R) of ]2~ in S~. Then any proper subarc of I?* is 
length-minimizing; this shows that x~, y,~ is a conjugate pair on F~, and we choose 
Fn = F~ (n >_ rat). For the first m ~ - 1 indices, we may choose any segment from 

Xn to Yn as rn.  

THEOREM 4,For most convex surfaces S the following holds: S is of  class C 1 
and for  any positive number r there are densely many pairs (x, 7-) in the sphere 
bundle T1S such that some geodesic G through x has the directions -t-7- at x and 
possesses a conjugate pair z_, z+, both at distance at least r from x. 

Proof. That most convex surfaces S are of class C 1 was first proved by Klee 
[4]. This enables us to speak about T1S. 
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The proof of the theorem uses the proof of Theorem 1 in [14], which will not 
be repeated here. 

We first observe that Theorem 2 can be used in the particular case that S is a 
polytopal surface, on which an infinitely long (in both directions) geodesic F can 
be considered. Then z± = q -~  and the arc F0 C F can be chosen arbitrarily long. 

Thus, using Theorem 3 instead of Lemma 2 from [14], the proof of Theorem 1 in 
[14] shows precisely that most convex surfaces have a dense set of pairs (x, 7-) such 
that some geodesic arc G of length at least 2r has x as middle point, has directions 
±7- at x and realizes the minimal length among all arcs in a whole neighbourhood 
of G. Thus G has its endpoints as a conjugate pair and the theorem is proved. 

An analogous use of the proof of Theorem 2 in [14] leads to the following. 

THEOREM 5.On most convex surfaces there are non-self-intersecting geodesics 
G with arbitrarily distant (on G) conjugate pairs. 

4. O n  C l o s e d  G e o d e s i c  A r c s  

On most convex surfaces there are no closed geodesics, as Gruber established in [3], 
but there are infinitely many closed stretched geodesic arcs; more precisely, there 
are arbitrarily (finitely) many pairwise disjoint closed stretched geodesic arcs [14]. 
(In the statement of Theorem 3 of [14], the word 'infinitely' appears inadvertently 
instead of 'arbitrarily'; that the geodesic arcs are indeed stretched can be seen in 
its proof.) 

We complete here the picture by proving the next result. 

THEOREM 6.On most convex surfaces, for  any number n E I~I, there are points 
x admitting n closed stretched geodesic arcs at x, every two of  which meet only 
inside a disc o f  radius 1In around x. 

Proof. Let Sm be the family of all convex surfaces S such that, for any point 
x E S, there are at most m - 1 closed stretched geodesic arcs at x having (pairwise) 
no common point at distance at least m-1 from x. To prove the theorem it suffices 
to show that Sm is nowhere dense. 

To this end, let O be open in the space of all convex surfaces and choose a 
polytopal surface $ E O without closed geodesics (see [1], pp. 377-378) and 
with full angles larger than :r. Then S has a simple closed quasigeodesic Q not 
degenerated to a quasigeodesic arc traversed back and forth (see [1], p. 378 or [6]), 
and this, in absence of any closed geodesics, must go through a vertex v of S. 

We cut S along Q and get two pieces SI, $2. Let vi E Si and Q~ c Si correspond 
to v and Q, respectively (i = 1,2). Let #(v) denote the (measure of the) full angle 
of S at v and choose 

c <  
- 2m 

Let tab be an isosceles triangle with the sides ta, tb of length AQ/2  and with the 
angle e between them. 
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By the general gluing theorem of Aleksandrov ([1], p. 362) or its polyhedral 
variant ([1], p. 317), we can glue together S1, $2 and 2m copies tiaibi (i = 
1, 2, ..., 2m) of tab as follows: 

(i) tl ,  t2, ..., t2m, vl, v2 will coincide, 
(ii) al,  a,~+l and the point of Q1 at distance (on Q1) AQ/2 from V 1 will coincide, 

(iii) bm~ b2r~ and the point of Q2 at distance (on Q2) AQ/2 from v2 will coincide, 
(iv) bi, hi+m, ai+l, ai+m+l will coincide (i = 1~ . . ,  m - 1). 

Denote by 5'~ the resulting polytopal surface, with a point v t corresponding to 
vl and v2. Clearly, 5'~ admits m closed geodesic arcs Fi at v t, lying in tiaibi t3 
ti+mai+,~bi+,~ (i = 1, ..., m). 

For s small enough there is a surface 5'* E O congruent to S~. Now, let the 
convex surfaces 5'n converge to S* for n ---+ c~. Let v* C S* and F~" C S* 
correspond to v r and Fi (i = 1~ ..., m), and choose vn E Sn such that vn -+ v*. By 
Theorem 3, there are stretched geodesic arcs Fin C Sn with both endpoints at Vn, 
such that Fin --+ F~. 

Since r* N F~ = {v*} for i ¢ j ,  we have diamFin fq Fj,~ --+ 0. 
Hence, for every element 5" of a whole neighbourhood Af of 5'*, there are m 

closed geodesic arcs at some point x' E 5 '~, with no common points of any two of 
them at distance at least m -1 from x ~. 

Thus, Sm is nowhere dense, and the theorem is proved. 
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