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Abstract

Conditions are given for the existence of hamiltonian paths and cycles in the so-called
Toeplitz graphs, i.e. simple graphs with a symmetric Toeplitz adjacency matrix.
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0. Introduction?

An (nxn) matrix A = (a;;) is called a Toeplitz matrix if a;; = a;4+1,;+1 for each
i,j=1, ...,n— 1. Toeplitz matrices are precisely those matrices that are constant
along all diagonals parallel to the main diagonal, and thus a Toeplitz matrix is
determined by its first row and column. Toeplitz matrices occur in a large variety of
areas in pure and applied mathematics. For example, they often appear when differen-
tial or integral equations are discretized, they arise in physical data-processing
applications, and in the theories of orthogonal polynomials, stationary processes, and
moment problems; see Heinig and Rost [9]. Other references on Toeplitz matrices are
Gohberg [8] and Iohvidov [10].
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Fig. 1. A symmetric Toeplitz adjacency matrix T and the corresponding graph.

A Toeplitz graph is a (undirected) graph with a symmetric Toeplitz adjacency
matrix. Therefore, an (n x n) matrix B = (b;;) is the adjacency matrix of the Toeplitz
graph G on n vertices if B is a 0—1 Toeplitz matrix, B is symmetric, and for all
i,j =1, ...,n the following holds: the edge {i,j} is in the edge set of G if and only if
b;j = bj; = 1. In this paper we describe hamiltonian properties of Toeplitz graphs. The
n distinct diagonals of an (n x n) symmetric Toeplitz adjacency matrix will be labeled

0,1,2, ...,n— 1. Diagonal 0 is the main diagonal and it contains only zeros, i.e.
a; =0 for all i=1, ...,n so that there are no loops in the Toeplitz graph. Let
fy,1t ..., t; be the diagonals containing ones (0 <t; <t, < --- < t; < n). Then, the

corresponding Toeplitz graph will be denoted by T,{t, ...,t>. That is,
T,<ty, ... .ty is the graph with vertex set 1,2, ...,n in which the edge {i,j},
1 <i<j<n, occurs if and only if j — i = 1; for some I, 1 <1< k. For example, let
n=6,k=2,t; =2,and t, = 5. Fig. 1 shows the symmetric Toeplitz adjacency matrix
T and the Toeplitz graph T<2, 5).

Closely related to Toeplitz matrices are the so-called circulant matrices. An (1 x n)
matrix C is called a circulant matrix if it is of the form

Co C1 Ca =+ Cp—p Cp—3
Cn—1 Co €1 ° Ch—3 Cu—»
Ch—2 Ch—1 Co Ch—g Cy—3

Cq €2 €3 =+ Cp—1 Co

For each i,j=1,...,n and k=0,1, ...,n—1, all the elements (i,j) such that
J — i = k(mod n) have the same value ¢,; these elements form the so-called kth stripe
of C. Obviously, a circulant matrix is determined by its first row (or column). It is clear
that every circulant matrix is a Toeplitz matrix, but the converse is not necessarily
true. Circulant matrices and their properties have been studied extensively in Davis
[5].

Several authors have formulated conditions for connectivity and Hamiltonicity of
circulant (di)graphs, i.e. (di)graphs with a circulant adjacency matrix. Garfinkel [7]
proved that the number of dicycles associated with the kth stripe of an (n x n) circulant
matrix is given by gcd(k, n). Boesch and Tindell [1] characterized the circulant
graphs which are connected and conjectured that all connected circulant graphs are
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hamiltonian. This conjecture has been proven by Burkard and Sandholzer [2]. Van
Doorn [6] derived an explicit expression for the connectivity of circulant digraphs.
Medova-Dempster [11] considered the asymmetric TSP (Traveling Salesman Prob-
lem) for circulant matrices and conjectured that this problem is .4#2-hard in the
general case. Finally, Van der Veen et al. [13] described two heuristics for the TSP
restricted to symmetric circulant matrices and showed that these two heuristics are
superior to some well-known heuristics for solving the general symmetric TSP.

Our motivation for considering hamiltonian properties of Toeplitz graphs is two-
fold. First, we wish to study these properties for graphs that have adjacency matrices
from a broader class than that of the circulant adjacency matrices. Our second aim is
to investigate which classes of subgraphs of the complete graph the TSP to be
efficiently solvable (note that if the TSP for circulant matrices turns out to be
A'P-hard, then the TSP for Toeplitz matrices is also .#"2-hard). At present there are
only few examples of such classes of subgraphs. Cornuéjols et al. [3, 4] gave a poly-
nomial-time algorithm for the TSP restricted to Halin graphs and Ratliff and Rosen-
thal [12] solved efficiently the TSP for a graph that models a rectangular warehouse.

We are indebted to Gerard Sierksma for his moral support and for inviting Tudor
Zamfirescu to visit the university of Groningen to participate in joint research. This
co-operation resulted in the present paper.

1. Nonhamiltonian and nontraceable Toeplitz graphs

We start with a few simple results providing necessary conditions for a Toeplitz
graph T,{ti, ..., t;) to be hamiltonian or traceable, where a graph is called traceable
if it admits a hamiltonian path. Clearly, a necessary condition for traceability is
connectedness and a necessary condition for Hamiltonicity is 2-connectedness. The
following theorem gives a lower bound on the number of components of a Toeplitz
graph.

Theorem 1. T,{t,, ...t has at least gcd(ty, ... ,t,) components.
Proof. It will be shown that the vertices 1, ...,gcd(ty, ..., t) are all in different
components. Let u,ve {1, ...,ged(ty, ..., %)} and u # v. Assume that the vertices

u and v are in the same component, i.e. there is a path joining u and v. So, there are
A€Z,i=1, ...,k such that

Therefore, there is a A € Z\{0} such that u = v + 1 ged(ty, ... ,t;) which contradicts
the assumption that u,ve {1, ..., ged(ty, ... ,f,)} and u #v. [

Corollary 1. If ged{¢, ..., t;) > 1, then T,{ty, ...t is disconnected.
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Note that T,{ty, ...,t) can have more than ged(ty, ...,t;) components. For
instance, consider T's¢3,4) which has 2 components whereas ged(3, 4) = 1. On the
other hand, Burkard and Sandholzer [2] showed that if T,{ty, ...t > is a circulant
graph, i.e. if t; occurs then n — ¢; also occurs for all [ = 1, ..., k, then the number of
components is exactly ged(ty, ..., ;).

Theorem 2. If there is a nonempty subset J of K = {1, ..., k} such that

Y (n—t)<ged{t;ljed} 1)
ieK\J
then the Toeplitz graph T,{ty, ... ,t;) is not 2-connected, and if there is a nonempty
subset J of K = {1, ... ,k} such that
Y (n—t)<ged{t;|je} —1 2)
ieK\J
then T,{ty, ...ty is disconnected.

Proof. The Toeplitz graph H whose set of diagonals is {t;|jeJ} has at least
ged{t;|j € J} components. The graph T,{t, ...t evolves from H by adding n — ¢;
new edges for every i € K\ J. Thus, if (2) holds, then T, {ty, ..., is disconnected, and
if (1) holds, then T,{ty, ... ,t; ) is not 2-connected. []

For example, consider the graph T';(3, 5, 6) (see Fig. 2) and let J = {1, 3}. Then
Theorem 2 states that this graph is not 2-connected and hence nonhamiltonian. The
next theorem describes a kind of degenerate case of Theorem 2 corresponding to
J = 0 with ged@:= n.

Theorem 3. If

M=

t;>(k—1)n

1

i

Fig. 2. The Toeplitz graph T-,¢3, 5, 6).
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then T, {ty, ..., tyy is not 2-connected and if
k
Y>>k —1n+1
i=1
then T,{ty, ...,t;y is disconnected.

Proof. The number of edges of T,{ty, ... ,t; ) 1s

(n—ti)=kn— i i

1 i=1

M=

i

Therefore, under the first assumption the number of edges is less than n, and hence
T,{ty, ..., t;» is not 2-connected, and under the second assumption the number of
edges is less than n — 1, and hence T,{ty, ..., t;» is disconnected. []

Theorem 4. Consider the Toeplitz graph T,{t1,t,» and let n = 5. If

ty Hta<n<3ty +t, (3)
then T,{ty, t,) is nonhamiltonian. If t; > 3 and

ti+t,+2<n<3ty+1t, 4)

then T,{t,t, ) is nontraceable.

Proof. (3) is equivalent to the existence of two vertices u, v such that
l<u<ty,n—ty<v<n and v—u=ty+t,.

Then both u and v have degree two, and any hamiltonian cycle of T,{t;, t,) contains
the cycle (u, u + t1, v, u + t,), which is impossible for n # 4.

If (4) holds, then there are three pairs of vertices u, v of the type described above,
defining three different cycles. In each of these cycles, u and v, both having degree two,
cannot be interior to a hamiltonian path of T,<t;, t, ». Thus each of these three cycles
contains an endpoint of the hamiltonian path, which is of course impossible. []

2. Toeplitz graphs with z;, =1

Toeplitz graphs with t; = 1 are obviously traceable. Now we characterize those
which are hamiltonian.

Lemma 1. Let t, > n/2. T,{1,t,, ...ty is hamiltonian if and only if n, t,, ... ,t, are
not all of the same parity.
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Fig. 3. A hamiltonian cycle in the Toeplitz graph T,,<1, 7).
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Fig. 4. T,<1,t,) with both n and ¢, even.

Proof. (if) If n — t; is odd for some Li=2,..,kthen(L,1+¢,t,....,n—t,nn— 15
n—t —I,n—t,~—2,n—2,n—3,n—t,-—3,n~ti—4, ... ;2) is a hamiltonian cycle
in T,{1,1,, ..., 1) (see Fig. 3 for the case n = 12,t, = 7).

(only if) Suppose now that T,(1, t2, ..., 1ty is hamiltonian and n — ¢, is even for
each i,i =2, ... ,k. Then any hamiltonian cycle of T,{1,t,, ...,t) uses the path
P=n—t,+1L,n—t,+2, ... ,t; — 1, t,, because the vertices of P have degree two in
T,<{1,t,, ..., t; ). Therefore, the graph H obtained from T,{1, ¢,, ... , 1 » by contract-
ing P to a single vertex is also hamiltonian. But H is also bipartite and has an odd
number of vertices, namely 2(n — t,) + 1. This leads to a contradiction. []

Lemma 2. Let k=2 and t, < n/2. T,{1,t,> is hamiltonian if and only if nt, is even.

Proof. (only if) If T,,<1, 1, is hamiltonian, then both n and ¢, cannot be odd because
in this case T,{1,t,) is a bipartite graph with an odd number of vertices, hence
nonhamiltonian.

(if) If nt, is even, then there are four cases to consider. In case both n and ¢, are even,
a hamiltonian cycle of T, <1, t, ) is illustrated in F ig. 4. If nis odd and ¢, is even, then
T,<1, t; ) is hamiltonian (see Fig. 5). If n is even and t5 is odd, then either | n/t, |is even
and Fig. 6 illustrates a hamiltonian cycle in T,<1,t; ), or| n/t, |is odd and such a cycle
is given in Fig. 7. [

By combining Lemmas 1 and 2 we get the desired characterization for the case
Ly =1,
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L+l

Fig. 5. T,<1,t,) with n odd and ¢, even.

5+l
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[

Fig. 6. T,{1,t, ) with n even, t, odd and | n/t, | even.
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2e¢ ¢
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g gl 4

P e ad hé—s
Fig. 7. T,<1,t,) with n even, t, odd and | n/t, | odd.

Theorem 5. The Toeplitz graph T,{1,t,, ... ,t,» is hamiltonian if and only if either n,
ty, ... 1 are not all of the same parity, or they are all even and t, < n/2.

Proof. Left to the reader. [J
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3. Toeplitz graphs with ¢, = 2

In this section we present a few results on Toeplitz graphs with t; = 2. So far, no
characterization theorem has been obtained. We suppose t, to be odd, otherwise
ged(2, t;) > 1, which implies that T, <2, t, > is disconnected.

Theorem 6. Let t, > (n — 1)/2 and t be odd. If n is even, then T,{2, ty ) is traceable,
but nonhamiltonian. If n is odd, then T,<2, ty) is hamiltonian if and only if (n — t,)/2 is
odd.

Proof. Let n be even. If (n —t, + 1)/2 is even, then 1,3,5,...,2 + t,2,4,4 +t,,
6+16,,68 ....n—3n—1n—1t,— Ln—t+1,n—1t,+3,...,n—2, nisahamil-
tonian path in T,<2, t,), else, i.e. if (mn—t, +1)2is0dd, 2,4,6, ...,1 + t,1,3,3 +
12,5+ 8,5 .., n—2,mn—t,n—t, +2,n—t,+4,...,n—1 is a hamiltonian
pathin T,<2, t, ) (see Fig. 8 for the case n = 16,t, =9andn = 16,1, = 11, respective-
ly).

Assume that (n — ¢, + 1)/2 is even and that T,<2, t,) has a hamiltonian cycle C.
Since vertex n has degree two in T,{2,t,), C contains the path n — ty,n,n— 2.
Because n — t, — 2 has degree three and n — t; and n — 2 are two of its neighbors,
C contains either the path n — t2 —2, n—t,n,n— 2, or the path n — t,n,n—2,
n—t, — 2. If C contains the path n — ¢, — 2, n—ty,n,n— 2, then C also contains
the path 1,3,5, ...,n—t, —2,n — trp,m,n—2, n—4, ... .3+ 1t,,1+t,, otherwise
C would contain a smaller cycle. On the other hand, if C contains the path
n—ty,nn—2n—t,—2 then C also contains the path n—1t,,n,n—2,
n—ty—2,n—t,—4,n—4,..,1+t,,1, otherwise the cycle C could not be hamil-
tonian. In both cases, the path cannot continue beyond 1, and a contradiction is
obtained. An analogous argument shows that if (n —t, + 1)/2 is 0odd, then T,<2, t,)
is also nonhamiltonian.

Fig. 8. The Toeplitz graphs T;4<¢2, 9> and T16<2, 11).
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Now let n be odd. If (n —t,)/2 is odd, then (1,3,3 + 5,5+ 5,5 7,7 + 14, ...,
n—1ln—t,—1l,n—t,+1l,n—t,+3,...,2+1t,,2,4,4+1,,6+1,,6,8 8 +1,,
con—=2,nn—ty,n—t,+2,n—t,+4,..,1 +1t,) is a hamiltonian cycle in
T.<2,t;). The proof that T,(2, t,) is nonhamiltonian if (n — t,)/2 is even, is similar to
that in the case n is even. [

By a variant of the above argument, applying further ideas from the proof of
Theorem 9 (see Section 4), it can also be shown that for n odd and (n — t,)/2 even,
T,<2,t, ) is not only nonhamiltonian but also nontraceable.

Theorem 7. Let nbe even, k > 2,t, = n/2,t;odd for alli =2, ... , k. T,<{2, ty, ... , b > is
hamiltonian if and only if (n — t; + 1)/2,i =2, ..., k, are not all of the same parity.

Proof. (if) Suppose two of the integers (n — t; + 1)/2,i =2, ...k, say o and f3, are of
different parity, for example o even and f odd. Then (1, n — 28 +2,n — 28, ..., 20 — 2,
n—1n—3,20¢—4,20—6,..,42,n—20+3,n—2a+1,...,26—1,n,n—2,
26 —3,28 —5, ..., 3)is a hamiltonian cycle of T,,<{2, t, ..., ;> (see Fig. 9 for the case
n=20,k=3,t, =11 and t; = 13).

(only if) Suppose that T,{2, t,, ..., % » is hamiltonian and all integers (n — t; + 1)/2,
i =2, ...,k areeven (the odd case is analogous). Let « = (n — t, + 1)/2 and shrink the
subgraph of T,{2,t,, ... ,t;» spanned by the vertex set {20 + 1, 2o + 3, ... ,n — 1, 2,
4, ...,n— 20} to a single vertex v. Obviously, the new graph H is also hamiltonian.
But H is bipartite, since its vertex set can be partitioned into the subsets {v, 1,3 + ¢,
574ty ...,n—t,—2,n}and {1 +t,,3,5+ 15,7, .., n— 2,n — t,} (see Fig. 10).
Moreover, H has an odd number of vertices, namely 2« + 1. Hence, H is nonhamil-
tonian, which leads to a contradiction. [

For t, odd and small enough a Toeplitz graph is always hamiltonian, as the
following result shows.

Fig. 9. The Toeplitz graph T,,<2, 11, 13).
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Fig. 10. Graph H.

n-ty n-1

s d

—e &
2 tr+1 n-2tp42 n-tpy-1

Fig. 11. T,{2,4m + 1) with n even.

1 tr+2 n-2ty+1 n-ty

L —&
2 2ty n-ty-1 n

Fig. 12. T,(2,4m — 1) with n even.

Theorem 8. Let t, = ¢ (mod 4), where ¢ = + 1. If n is even and t, < (n + &)/3, then
T,<2,t, ) is hamiltonian. Ifnis odd and t, <(n + 2 + €)/4, then T,<2,t,) is hamil-
tonian. N

Proof. If nis even and ¢, = 4m + 1, then Fig. 11 shows a hamiltonjan cycle (observe
that 2, — 1 <n —¢, and t2+1<n—2t,+2). If nis even and t, =4m — 1, then
Fig. 12 shows a hamiltonian cycle (observe that t, + 2 <n — 2t, + 1 and 2t, <
n—t,—1).Ifnisodd and t, = dm + 1, then Fig. 13 shows a hamiltonian cycle (observe
that 2t,—1<n—2t,+2 and L+1<n—t) If nis odd and t, =4m — 1, then
Fig. 14 shows a hamiltonian cycle (observe that ¢, +2<n— t; —1 and 2¢t, <
n—2t,+1). O
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to+2 2tp-1 n-2tp42 n-ty-1 n

2 tr+1 n-ty n-1

Fig. 13. T,{2,4m + 1) with n odd.

1 ty+2 n-tp-1 n

2 to+1 2ty n-2ty+1 n-ty n-1

Fig. 14. T,{2,4m — 1} with n odd.

Corollary 2. If t, is odd and less than (n + 3)/4, then T,{2, t,) is hamiltonian.

In Corollary 2, the only case not trivially covered by Theorem 8 is (n +1)/4 <t, <
(n + 3)/4, which implies 4t, = n + 2. But in this situation n is even, t, = 3 and n > 10,
from which ¢, < (n — 1)/3 follows and, by Theorem 8, T,{2, t, ) is hamiltonian. The
example n =9, k = 2, t; = 2, t, = 3 shows that the bound (n + 3)/4 mentioned in the
corollary cannot be improved.

4. Other classes of Toeplitz graphs

In the case that k = 2 and t,, ¢, satisfy the inequality t; + 2¢, > n, we are able to
characterize the Toeplitz graphs that are hamiltonian. Since the situation for t; =1
has been completely described in Theorem 5, we now deal with ¢; > 2. In addition, we
shall assume ged(ty, t,) = 1, for otherwise T,{ty, t, ) is disconnected, by Corollary 1.

Theorem 9. Let k =2, t; > 2, ged(ty, t;) = 1, and suppose t; + 2t, = n. T,{ty,t;) is
hamiltonian if and only if (n — t,)/ty is an odd integer.

Proof. (only if) For v =1, ...,t; let g =q(v) be the largest integer such that
v + gt; + t, < n. Consider the subgraphs B, on 2g + 2 vertices as shown in Fig. 15.
Notice that all vertices of B, but v + t, and v + gt; have the same degree (2 or 3) both
in B, and T,{ty,t,), thus {v + t,, v + gt; } is a vertex cut-set.

Since we have t; > 2 such graphs B,, T,{ty, t, ) is hamiltonian only if v + ¢, and
v + gt; can be joined by a hamiltonian path in B, for all v =1, ...,t;, which is
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v v+,
v+, VHE+H,
v+2t, V+21+t,
v+qt, VHgt+,

Fig. 15. A subgraph B, of T,{t1,1,).

possible only if g is even. By the choice of ¢, 0 < n — (v + gt + t;) < t; holds for every
v, which means that | (n —t, — v)/t; | is equal to ¢, and is thus even for any
v=1,....,t;. This occurs only if (n — t,)/t, is an odd integer.

(if) On the other hand, if (n — t,)/#; is an odd integer then q is even and therefore
every subgraph B, has a hamiltonian path P, from v + t, to v+ gt;. Moreover,
T,<ty, t, ) contains t, further paths Q, = v + qt1,v +(q + ty, ... ,v + rt;, whereris
the smallest integer such that v + rf; > t,. Such a 0, may be a single vertex (r = g) or
a path of positive length, but in either case its endpoint v + rt, belongs to another
subgraph B, and plays there the role of v' +t,. In this situation we have
v—v' =1, (mod t;), ie., Q, joints B, to B, .., and consequently the subgraphs are
joined in the order v, v + 15, v + 2t5, ... ,v + (t; — 1)t, (mod t,). Since ged(ty, t,) = 1,
this yields a hamiltonian cycle in T,{t;,t,>. []

Another interesting situation occurs when 7 is a multiple of #; + ¢,.

Theorem 10. If gcd(t,,t,)=1 and n is a multiple of t, + t5, then T,{ty,t,) is
hamiltonian.

Proof. We have to prove that the graph T,{ty,t,) =(V,E) with |V|=n and
E={{i,i+t}li=12 ...,n—t;}u{{i,i + t23li=1,2,...,n—t,} is hamiltonian
under the assumption that n/(t, +t,) is an integer k. We apply induction on k.
By Theorem 9, the assertion is true for k = 1; suppose it has been verified for k — iy
k>=2. Consider two subgraphs of T,{ty,t,), namely G; =(Vy,E;) with
Vi={12,..,t; +t,} and E,= {{i.j}€Eli,jeV;}, and G, = (V,, E,) with
Vo={ti+t,+1,...,n} and E, = {{i.j} €Eli,je V}. By Theorem 9 and by the
induction hypothesis, both G, and G, are hamiltonian. Moreover, G, is itself a cycle
and t; + t, + 1 has degree 2 in G,.

To obtain a hamiltonian cycle in T,{t;,t,> we remove two edges, namely
{1 +1,,1+2t,} from the cycle G, and {L+t+1t,142t; +1,} from the
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Fig. 16. Patching of the hamiltonian cycles in G; and G,.

hamiltonian cycle in G,, and add the two edges {1 +1¢;,1+1¢t; +¢t,} and
{1+2t;,1+2t; +1t,} from E\(E;UE,) to connect the two resulting hamiltonian
paths in G; and G,. [J
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