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Abstract: It is well-known that the largest cycles of a graph may have empty inter-
section. This is the case, for example, for any hypohamiltonian graph. In the literature,
several important classes of graphs have been shown to contain examples with the
above property. This paper investigates a (nontrivial) class of graphs which, on the
contrary, admits no such example. c© 1997 John Wiley & Sons, Inc. J Graph Theory 25: 37–52, 1997

1. INTRODUCTION

In 1966 T. Gallai (see [1]) asked whether there exist connected graphs in which the intersection
of all longest paths is empty. The first example, provided by H. Walther [8] in 1969, was rather
involved, but showed that the case of paths does not qualitatively differ from that of cycles, for
which Petersen's graph was a notorious example. Subsequently the question was refined in [9]
and answered to some extent in a series of papers [2], [3], [5], [10], [11], [12] (see Chapter 3.12
in H.-J. Voss' book [7]). By restricting the class of graphs under consideration we can guarantee
that the intersection of all longest paths or cycles necessarily be nonempty. This is the case, for
example, for planar 4-connected graphs because, by a famous theorem of Tutte [6], they are all
hamiltonian.

The lattice graphs—finite connected subgraphs of the usual infinite square lattice graph in
R2—form without any doubt an important family from both the pure and applied mathematical
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points of view. In particular, the hamiltonian problem in lattice graphs is as nontrivial as in the
general case. In [4], B. Menke showed that, among the lattice graphs too, we can find examples
whose longest cycles have empty intersection. However, for a very natural restriction of this
class of graphs, he showed that no such example exists. The graphs of the restricted class can
be defined as follows: We take a cycle in the infinite square lattice graph and then consider all
points and edges lying inside or on that cycle. We call a graph obtained in this way a grid graph.

B. Menke [4] proved that every grid graph possesses at least 4 points which lie on every longest
cycle. Our aim here is to complement this qualitative result by some quantitative ones depending
only on two special point sets on the cycle defining the grid graph. We shall see as a consequence
that in many grid graphs the longest cycles have a rather large intersection.

Also, the proof in [4] had a global character. We shall provide here a useful local theorem
stating that the intersection of all longest cycles contains points close to any pair of adjacent
points, one of degree 2 and the other of degree 3.

Let G be a grid graph, defined by a cycle Γ which will be called the boundary cycle of G.
Let A be the set of all points of G of degree 2 and B the set of all points of Γ of degree 4 in G.
Let ρ(A) denote the smallest distance between any two different points in A, and ρ(A, B) the
smallest distance between any point in A and any point in B. If B = ∅, put ρ(A, B) = ∞. Also,
let Z be the point set of the intersection of all longest cycles of G.

Moreover, we denote by S the (unique) grid graph with |V (S)| = 9.

2. FOUR LEMMAS

We give here four lemmas. The third is the basis for our local Theorem 1, while the last is used
in the proof of Theorem 4.

Lemma 1 [4]. Any path in G of length 2 whose points are collinear meets all longest cycles
of G.

Lemma 2. If Γ contains the path [2, 1, 3], where dG(1) = 2, dG(2) ≥ 3, dG(3) ≥ 3 and 4 is
the other common neighbor of 2 and 3 then each longest cycle of G meets the set {1, 2, 3, 4}.

Proof. Using the notation of Figure 1, dG(1) = 2, dG(2) ≥ 3 and dG(3) ≥ 3 yield 5, 7, 8
∈ V (G). The other points of the lattice shown on Figure 1, which may or may not belong to
V (G), are introduced for immediate or later use. Each of the Figures 2–15 and 17–24 contains
two configurations. The indicated sets of vertices are the same in both configurations.

Figure 1
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Suppose the points 1, 2, 3, 4 are missed by some longest cycle C. Then, by Lemma 1, we have
5, 7, 8 ∈ V (C).

Let P denote [7, 8] or [7, 12, 13, 8]. If P ⊂ C then

Figure 2a

Figure 2b

P could be replaced by [7, 3, 1, 2, 4, 8], which would yield a longer cycle in G. So P 6⊂ C and

[6, 7, 12] ∪ [13, 8, 9] ⊂ C.

In particular, (8, 9) ∈ E(C); hence, by symmetry, (5, 9) ∈ E(C) too. If (11, 12) ∈ E(C), then
replacing [6, 7, 12, 11] by [6, 11] and [13, 8, 9, 5] by [13, 12, 7, 3, 4, 8, 9, 5] yields again a longer
cycle. Hence (11, 12) 6∈ E(C); analogously (13, 14) 6∈ E(C). Since (12, 13) 6∈ E(C) too,

[6, 7, 12, 17] ∪ [18, 13, 8, 9, 5] ⊂ C.

Figures 2a and 2b show how to obtain a longer cycle if 11 6∈ V (C) or (6, 11) ∈ E(C).
Therefore [10, 11, 16] ⊂ C.
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Figure 3

Figure 3 shows why P 6⊂ C, where P is any path joining 17 with 18 and avoiding the points
6, 7, 12, 13, 8, 9, 5, 10, 11, 16.

Figure 4

Figure 5

Figure 4 reveals that (16, 17) 6∈ E(C). It follows that (17, 21) ∈ E(C).

We see on Figure 5 why (15, 16) 6∈ E(C), whence (16, 20) ∈ E(C).
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Figure 6a

Figure 6b

Supposing (18, 19) ∈ E(C), Figures 6a and 6b show cycles longer than C in both cases
14 6∈ V (C) and 14 ∈ V (C).

Figure 7

Therefore (18, 22) ∈ E(C), and in this case Figure 7 shows a longer cycle. This contradiction
proves Lemma 2.
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Lemma 3. If Γ contains the path [2, 1, 3], dG(1) = 2, dG(2) ≥ 3 and dG(3) ≥ 3 then each
longest cycle of G meets the set {1, 2, 3}.

Proof. Suppose the points 1, 2, 3 are missed by some longest cycle C of G, see Figure 8.

Figure 8

By Lemmas 1 and 2, the points 7, 4, and 25 belong to C and obviously (7, 8), (5, 25) 6∈ E(C).
Thus

[6, 7, 12] ∪ [8, 4, 5] ∪ [24, 25, 26] ⊂ C.

Either (8, 13) or (5, 27) belongs to E(G) (if not, the square with vertices 4, 5, 9, 8 would lie
in C, which is impossible), say (8, 13) ∈ E(G).

Figure 9a

Figure 9b
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Figure 9c

Figure 9a shows that 11 ∈ V (C), while Figures 9b and 9c show that (6, 11) 6∈ E(C) and
(11, 12) 6∈ E(C), respectively. Therefore [10, 11, 16] ⊂ C.

Concerning the edge (12, 13) there are two cases to consider.

Case I. (12, 13) ∈ E(C).

Figure 10a

Figure 10b

If 17 6∈ V (C) then Figure 10a shows a cycle longer than C. Figure 10b shows why (17, 18) 6∈
E(C). Thus [16, 17, 21] ⊂ C.

The point 18 cannot be missed by C, as Figure 11 illustrates. This together with (17, 18) 6∈
E(C) yields [22, 18, 19] ⊂ C.
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Figure 11

If 14 6∈ V (C), a longer cycle is shown in Figure 12a. Also (9, 14) 6∈ E(C), otherwise see
Figure 12b. Hence [19, 14, 15] ⊂ C.

Figure 12a

Figure 12b

Supposing now 9 6∈ V (C), we discover a longer cycle in G, as Figure 13 reveals. Therefore
[5, 9, 28] ⊂ C.
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Figure 13

Figures 14a and 14b show that 27 ∈ V (C) and (27, 28) 6∈ E(C).

Figure 14a

Figure 14b

It follows that [26, 27, 29] ⊂ C, but in this case Figure 15 provides a longer cycle. Here the
cycle C is not entirely shown because there exist several combinatorial possibilities for C to
include the paths appearing in the figures.
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Figure 15

Case II. (12, 13) 6∈ E(C).

Figure 16

We start again with the situation shown in Figure 16. We must have (12, 17) ∈ E(C).
Now, if (13, 14) ∈ E(C), Figures 17a, 17b and 17c show cycles longer than C, according to

whether 9 6∈ V (C), (9, 14) ∈ E(C) or (5, 9) ∈ E(C). It follows that (13, 18) ∈ E(C).

Figure 17a

Figure 17b
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Figure 17c

We see now that there is no path P ⊂ C joining 17 with 18 and avoiding 10, 11, 16, 6, 7, 12,
13, 8, 4, 5. Indeed if such a path existed Figure 18 would show a cycle longer than C.

Figure 18

Also, (16, 17) 6∈ E(C), as follows from inspecting Figure 19. Thus, (17, 21) ∈ E(C).

Figure 19
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Figure 20

Suppose now (18, 19) ∈ E(C). If 9, 14 6∈ V (C), Figure 20 shows a longer

Figure 21a

Figure 21b

cycle. If only one of these points is not on C, Figure 21 shows longer cycles.
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Figure 22a

Figure 22b

If both belong to C, there are four different situations, for which Figure 22 provides

Figure 22c
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Figure 22d

cycles longer than C. Hence (18, 22) ∈ E(C). But then Figure 23 indicates

Figure 23

a longer cycle! With this final contradiction the proof ends.
The different situation Lemma 4 deals with makes a new notation necessary. This will be

incompatible with the above (note that Lemmas 2 and 3 had compatible notations).

Lemma 4. If Γ contains the path [5, 3, 1, 2, 4, 6], dG(1) = dG(2) = 2 and dG(3) = dG(4) = 3
then each longest cycle of G passes through 5 and 6.

Proof. If, for some longest cycle C of G, 5 6∈ V (C) then 1, 2, 3, 4 6∈ V (C) either. This
contradicts Lemma 1. Analogously, 6 6∈ V (C) is impossible.

3. RESULTS

Again, the notation will be different from those used in the preceding section.

Theorem 1. If Γ contains the path [2, 1, 3], dG(1) = 2, dG(2) = 3 and dG(3) ≥ 3 then each
longest cycle of G passes through 3.

Proof. Suppose there is a longest cycle C missing 3. Then 1 6∈ V (C) and, by Lemma 3,
2 ∈ V (C), which implies [4, 2, 5] ⊂ C, see Figure 24.



INTERSECTIONS OF LONGEST CYCLES 51

Figure 24

But then replacing [4, 2] by [4, 3, 1, 2] yields a cycle longer than C, which is a contradiction.

Theorem 2. If ρ(A, B) ≥ 2 and ρ(A) ≥ 3 then |Z| ≥ 2|A|.
Proof. For every point x of G of degree 2 consider the two points αx, βx adjacent to x(x and

αx have equal ordinates). Since ρ(A) ≥ 3, it is not possible to find different points x, y ∈ A such
that αx = βy or αy = βx or αx = αy or βx = βy . This implies that precisely 2|A| points of G
are adjacent to points in A. Because ρ(A, B) ≥ 2, all these points have degree 3. By Theorem
1, they lie on each longest cycle of G.

Theorem 3. If ρ(A, B) ≥ 2 and ρ(A) ≥ 2 then |Z| ≥ 3
2 |A| or G is isomorphic to S.

Proof. Let a1, a2, . . . , ak be the points of Γ of degree 2 in G, in cyclic order (ak+1 =
a1). Clearly k ≥ 4. Unless G is isomorphic to S, no three points ai, ai+1, ai+2 can satisfy
d(ai, ai+1) = d(ai+1, ai+2) = 2, d denoting here the distance between points in G. Therefore
there are p ≤ k/2 pairwise disjoint pairs of consecutive points of A such that the distance in Γ
between any two points in A which do not belong to the same pair is at least 3. For every such
pair the number of neighbors in Γ is 3, while for any other point of A there are 2 neighbors. Thus
there are precisely

3p + 2(k − 2p) = 2k − p

points in Γ adjacent to points in A. By Theorem 1, all these points belong to Z, whence

|Z| ≥ 2k − p ≥ 2k − k

2
=

3
2
k.

Theorem 4. If ρ(A, B) ≥ 2 then |Z| ≥ |A|.
Proof. For G = C4 the statement is true. Suppose now that G 6= C4 and let again A =

{a1, a2, . . . , ak}. Clearly, for no index i, d(ai, ai+1) = d(ai+1, ai+2) = 1. From A we select p
pairs of points adjacent in Γ such that no two other points of A be adjacent in Γ. We shall define
a function f : A → V (Γ).

For any point x ∈ A not belonging to a selected pair, the point γx of Γ adjacent to x and
preceding it in a chosen cyclic order on Γ is, by Theorem 1, in Z. Put f(x) = γx.

For any adjacent points ai, ai+1 ∈ A, the points ci, ci+1 ∈ Γ with

d(ci, ai) = d(ci+1, ai+1) = 2

and

d(ci, ai+1) = d(ci+1, ai) = 3

lie, by Lemma 4, in Z.
Suppose now for two consecutive selected pairs ai, ai+1 and ai+2, ai+3, we have ci+1 = ci+2,

where ci+j is the point at distance j from ai+j(j = 2, 3) on Γ. By Lemma 4, ci, ci+1, ci+3 ∈ Z,
where ci+3 is the point of Γ at distance 2 from ai+3 and 3 from ai+2. Let bi+2 be the point adjacent
to both ai+j and ci+j(j = 0, 1, 2, 3). We show that bi, bi+1, bi+2, bi+3 ∈ Z. By symmetry it is
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enough to prove this for bi, bi+1. Suppose indeed bi+1 6∈ Z. Then a longest cycle C of G has
ci, ci+1 or ci+3, ci+1, bi+2 as consecutive points. In the first case C would be extendable to a
longer cycle by replacing the edge (ci, ci+1) by the path [ci, bi, bi+1, ci+1]. In the second case the
length of C would be 6, while the circumference of G is obviously at least 12. Hence bi+1 ∈ Z,
which also implies bi ∈ Z. Put

f(ai+j) =
{

bi+j if ci+1 = ci+2
ci+j if ci+1 6= ci+2

(j = 0, 1, 2, 3). Since ρ(A, B) ≥ 2, for every selected pair ai, ai+1 and every point x ∈ A not
belonging to any selected pair, bi, bi+1, ci and ci+1 are distinct from γx. Hence f is injective and
|Z| ≥ k.

ACKNOWLEDGMENTS

Thanks are due the referees, who contributed to a better final version of this paper.

References

[1] P. Erdös and G. Katona (eds.), Theory of Graphs, Proc. Colloq. Tihany, Hungary, Sept. 1966, Academic
Press, New York (1968).
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