Closed geodesic arcs in Aleksandrov spaces

by Tudor Zamfirescu

Introduction

In this paper a metric space (A, δ) is called an Aleksandrov space if it is a complete intrinsic metric space with curvature bounded below by some real number k in the sense of A. D. Aleksandrov.

In Riemannian manifolds there is a certain connection between the conjugate points, the closed geodesic arcs, and the cut locus. This connection is described, for instance, by the following theorem from S. Kobayashi's paper [4].

Theorem K. Let M be a Riemannian manifold, $x \in M$ and y be a point of the cut locus of x closest to x. Then either y is conjugate to x, or y is the midpoint of a geodesic arc starting and ending at x.

We are going to strengthen this theorem in several directions and generalize it to arbitrary Aleksandrov spaces.

Definitions and notation

Let S_k denote the 2-dimensional complete simply-connected Riemannian manifold of curvature $k \in \mathbb{R}$.

For $k \in \mathbb{R}$, a complete intrinsic metric space (\mathcal{A}, δ) such that every point of \mathcal{A} has a neighbourhood in which any four points admit an isometric embedding in $S_{k'}$ for some $k' \geq k$ is called a space with curvature bounded below by k in the sense of A. D. Aleksandrov, for short an Aleksandrov space.

If $a, b, c \in A$, let \angle^*abc denote the angle of the triangle in S_k of side-lengths

 $\delta(a,b), \delta(b,c), \delta(c,a),$ opposite to the side of length $\delta(c,a)$.

Berestovskii [1] proved that the intrinsic metric space (A, δ) is an Aleksandrov space if and only if every point of A has a neighbourhood in which, for any four distinct points a, b, c, d, we have

$$\angle bac + \angle cad + \angle dab \le 2\pi$$
.

For k > 0, the definition requires in addition that, if \mathcal{A} is a one-dimensional manifold, then diam $\mathcal{A} \leq \pi/\sqrt{k}$.

For several other characterizations of Aleksandrov spaces, consult Burago, Gromov and Perelman's work [2].

A segment in A is a shortest path between two points of A.

A geodesic in \mathcal{A} is the image of an interval $I \subset \mathbb{R}$ through a continuous mapping $c: I \to \mathcal{A}$, such that every point in I has a neighbourhood in I on which c is an isometry. If $I = \mathbb{R}$ and c is periodic then c(I) is called a closed geodesic. If I is a compact interval [a, b] then c(I) is called a geodesic arc; if, moreover, c(a) = c(b) then c(I) is said to be a closed geodesic arc at c(a).

We use some basic concepts and results developed in [2]. So, for example, in any Aleksandrov space geodesics have definite directions and do not branch. Moreover, the angle between two geodesics exists.

If pa, pb are geodesics, let $\angle apb$ denote the angle between pa and pb.

Now consider an arbitrary (but nonempty) maximal (by inclusion) geodesic G=c(I) containing x=c(s). Then G has at least one direction + at x, the one corresponding, say, to the direction of increasing numbers in I. Let t>s be a point of I such that, for some neighbourhood $\mathcal N$ of the subgeodesic $G_y=c([s,t])$ of G from x to y=c(t), the minimal length of arcs from x to y in $\mathcal N$ is realized uniquely by G_y . The existence of such a point t is guaranteed by the definition of a geodesic in conjunction with the basic property that a proper subarc of a segment realizes uniquely the minimum distance between its endpoints. Denote by Ψ the set of all these points t and let $x_+=c(\inf\{t>s:t\not\in\Psi\})$, allowing for x_+ the value $+\infty$ too, in case $t\in\Psi$ for all t>s (which will never occur if G is a geodesic arc). We call x_+ the conjugate of x on G in direction +. This corresponds to the differential geometric notion of first conjugate point.

An endpoint in A is a point not interior to any segment (or, equivalently,

to any geodesic).

For $x \in \mathcal{A}$, the cut locus $C(x) \subset \mathcal{A}$ is the set of all points $y \in \mathcal{A} \setminus \{x\}$ such that there is a segment from x to y, not extendable as a segment beyond y.

Auxiliary results

We start with a few lemmas. The first two can be found in Burago, Gromov and Perelmen's paper [2].

Lemma 1 [2]. If the point p is interior to the geodesic ab and $q \notin ab$, then $\angle qpa + \angle qpb = \pi$.

An important result obtained in [2] is the following generalized Toponogov theorem.

Lemma 2 [2]. For any geodesic triangle abc in an Aleksandrov space,

$$\angle abc \le \angle abc$$
, $\angle bca \le \angle bca$, $\angle cab \le \angle cab$.

If $p \in \mathcal{A}$, then the space Σ_p of directions at the point p is defined as the completion of the metric space consisting of classes of geodesics starting at p, all geodesics in a class overlapping, and the distance being the angle between representatives (see [2], p. 23).

An important example of an Aleksandrov space is a convex surface. The space S of all (nondegenerate) closed convex surfaces in \mathbb{R}^3 , endowed with the well-known Pompeiu-Hausdorff metric is a Baire space.

"Most" means "all, except those in a first Baire category set".

Lemma 3 [5]. On most closed convex surfaces, most points are endpoints.

For other geometrically relevant, curious phenomena on convex surfaces, obtained via Baire categories, see [3], [6], [8].

Main result

To prove our main theorem we also need the following lemma, well-known in the Riemannian case, and also proven for convex surfaces in [7]. For the reader's convenience, we formulate and prove it here in the frame of Aleksandrov spaces.

Lemma 4. If in an Aleksandrov space A a point $y \in C(x)$ can be joined with x by a single segment only, then y is conjugate to x.

Proof. Consider an open neighbourhood \mathcal{N} of Γ (in the space of arcs) and an extension Γ_1 of Γ beyond y in \mathcal{N} . Since $y \in C(x)$, any segment Γ'_1

joining x with the endpoint y_1 of Γ_1 different from x is different from Γ_1 . Take $y_n \in \Gamma_1 \setminus \Gamma$ (n = 2, 3, ...) such that $y_n \to y$, and consider the subarc Γ_n of Γ_1 joining x to y_n , and the segment Γ'_n from x to y_n , which must be different from Γ_n . No subsequence of $\{\Gamma'_n\}_{n=1}^{\infty}$ may converge to a segment different from Γ because of the uniqueness of Γ . So, for n large enough, $\Gamma'_n \in \mathcal{N}$. Thus Γ'_n plus the subarc of Γ_1 from y_n to y_1 is shorter than Γ_1 and lies in \mathcal{N} . Hence y is conjugate to x.

Two sets $X, X' \in \mathcal{A}$ with a common point y will be called *orthogonal* at y if for any segments $xy, x'y \in \mathcal{A}$ with $x \in X \setminus \{y\}$ and $x' \in X' \setminus \{y\}$, whenever x and x' converge to y, then the angle $\angle xyx'$ converges to $\pi/2$.

Theorem. Let A be an Aleksandrov space, let $x \in A$, let $y \in C(x)$ be a point closest to x among all points in some neighbourhood in C(x) and let \mathcal{F} be the space of all segments from x to y endowed with the Pompeiu-Hausdorff metric.

If \mathcal{F} is connected then y is conjugate to x. If \mathcal{F} is disconnected then y is the midpoint of a closed geodesic arc at x dividing it into two segments; these are the only segments from x to y, and they are orthogonal to C(X) at y.

Proof. Let $y \in C(x)$ be closest to x among all points of C(x) from the open ball $B(y,\varepsilon) = \{y' \in \mathcal{A} : \rho(y,y') < \varepsilon\}$.

In view of Lemma 4, we may suppose that there are two segments Γ_1 , Γ_2 from x to y. If they lie in the same component of \mathcal{F} , then obviously y is conjugate to x (there is a whole convergent sequence of distinct segments in \mathcal{F}). So, suppose Γ_1 , Γ_2 lie in different components of \mathcal{F} .

If in some neighbourhood of y there are no points $z_1 \in \Gamma_1$, $z_2 \in \Gamma_2$ at a distance smaller than the length of $z_1y \cup yz_2$, then $\Gamma_1 \cup \Gamma_2$ is a closed geodesic arc at x, and y is obviously its midpoint. So, assume in each open ball $B(y, \delta)$ with $\delta < \varepsilon/2$ there are points z_1, z_2 on Γ_1, Γ_2 respectively, joined by an arc Φ shorter than $z_1y \cup yz_2$.

Suppose to Φ belongs a point p joined with x by at least two segments. Then $p \in C(x)$. Also, either z_1p is shorter than z_1y or z_2p is shorter than z_2y . So $p \in B(y, \varepsilon)$ and either $xz_1 \cup z_1p$ or $xz_2 \cup z_2p$ is shorter than Γ_1 , which is impossible, because y is supposed to be a point of $C(x) \cap B(y, \varepsilon)$ closest to x. Hence every point $u \in \Phi$ is joined by a unique segment Γ_u with x, and let $\gamma_u \in \Sigma_x$ be its direction at x. The map $u \mapsto \Gamma_u$ is continuous.

Let $\pi_{\Phi} = \{ \gamma_u : u \in \Phi \}$. When $z_1, z_2 \to y$ on Γ_1, Γ_2 the arc $\pi_{\Phi} \subset \Sigma_x$ keeps fixed its endpoints $\gamma_{z_1}, \gamma_{z_2}$. We may select sequences $z_1^{(n)}, z_2^{(n)} \to y$ such that, for the corresponding arcs $\Phi^{(n)}$, $\pi_{\Phi^{(n)}}$ converges to some arc π , say. Then $\gamma_{z_1}, \gamma_{z_2} \in \pi$ and in each direction from π we have a segment from x to y. But this shows that Γ_1, Γ_2 lie in the same component of \mathcal{F} , which contradicts our assumption.

Suppose now that there exists a third segment Γ_3 between x and y. Clearly, Γ_3 does not belong to at least one of the two components containing Γ_1 and Γ_2 , say to the first one. Then $\Gamma_1 \cup \Gamma_3$ must also be a closed geodesic arc. Since geodesics do not branch, this is impossible. Hence Γ_1 and Γ_2 are the only segments from x to y.

Let now $x_1 \in \operatorname{int}\Gamma_1$, $x_2 \in \operatorname{int}\Gamma_2$ and let $y_n' \in C(x)$ converge to y for $n \to \infty$. If $\angle x_i y y_n' \to \alpha$ for some $\alpha < \pi/2$ then, by Lemma 2, $\angle^* x_i y y_n' < \alpha'$ for some $\alpha' \in (\alpha, \pi/2)$ and for n large enough. But this implies $\rho(x, y_n') < \rho(x, y)$, which contradicts the assuption.

On the other hand, by Lemma 1, $\angle x_1yy_n' + \angle x_2yy_n' = \pi$, which implies $\angle x_1yy_n' \to \pi/2$ for $n \to \infty$, because the existence of a subsequence of angles $\angle x_1yy_n'$ convergent to a number larger than $\pi/2$ yields the existence of a subsequence of angles $\angle x_2yy_n'$ converging to a number smaller than $\pi/2$, which was just shown to be impossible. Hence Γ_1 and Γ_2 are orthogonal to C(x).

We remark that in arbitrary Aleksandrov spaces a point of C(x) closest to x may not exist. In fact, by Lemma 3, this is the generic behaviour for the case of closed convex surfaces.

The Theorem obviously implies Theorem K and has the following Corollary, already mentioned by Kobayashi [4] in the frame of Riemannian manifolds.

Corollary. If (A, δ) is an Aleksandrov space and $\delta(x, y)$ is minimal among all $x \in A$ and $y \in C(x)$, then either x and y are conjugate to each other, or x and y lie on a closed geodesic and determine on it two equally long segments.

References

- V. N. Berestovskii, Spaces with bounded curvature and distance geometry, Siberian Math. J. 27 (1986) 8 - 19.
- [2] Y. Burago, M. Gromov and G. Perelman, A. D. Aleksandrov spaces with curvature bounded below, Russian Math. Surveys 47 (1992) 1 58.
- [3] P. Gruber, Baire categories in convexity, in: P. Gruber, J. Wills (eds), Handbook of Convex Geometry, Elsevier Science, Amsterdam, 1993, 1327-1346.
- [4] S. Kobayashi, On conjugate and cut loci, Global Differential Geometry 27 (1989) 140-169.
- [5] T. Zamfirescu, Many endpoints and few interior points of geodesics, Inventiones Math. 69 (1982) 253-257.

- [6] T. Zamfirescu, Baire categories in convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991) 139-164.
- [7] T. Zamfirescu, Conjugate points and closed geodesic arcs on convex surfaces, Geom. Dedicata 62 (1996) 99-105.
- [8] C. Zong, Strange Phenomena in Convex and Discrete Geometry, Springer-Verlag, New York, 1996.

T. ZAMFIRESCU Fachbereich Mathematik Universität Dortmund 44221 Dortmund, Germany