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Introduction

In the very enjoyable book ([3], p. 44) of Craft, Falconer and Guy we read:
“We take... a... convex surfaceC in R3.... Steinhaus... asked... what can be said
qualitatively about the set of all “farthest points” from a pointx.” Our aim here
is to investigate this question.

Let S be the space of allclosed convexsurfaces (i.e. boundaries of open
bounded convex sets) inR3 and denote, for anyS ∈ S and x ∈ S, by Fx the
set of all farthest points fromx and byCx the set of all points joined withx by
at least twosegments(i.e. shortest paths).

We shall see that to any pointx on a closed convex surface we may associate
in a natural way a point or a Jordan arcJx ⊃ Fx lying in the cut locus ofx. This
will provide the topological characterization ofFx .

Further we shall prove an easily stated, remarkable geometric property of
Fx : any three of its points (if it contains at least three) form an obtuse or right
geodesic triangle.

Moreover, the preceding result is shown to hold for a large class of geodesic
triangles with vertices in the cut locus. Interestingly, the extreme case of a right
triangle does not imply the degeneracy of the surface.

For the reader, to be familiar with Aleksandrov’s book [1] (see also [2), [4])
would be of considerable help.

The usual intrinsic metric ofS ∈ S , induced by the Euclidean distance in
R3 will be denoted byρ.

Let x ∈ S, and denote byEx the cut locusof x, i.e. the set of all endpoints
different fromx of maximal (by inclusion) segments starting atx. Also, letE be
the set of allendpointsof S, i.e. points not interior to any segment ofS. The set
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E may be quite large. We proved in [6] that, in the sense of Baire categories, on
most convex surfaces most points are endpoints. Our cut locusEx includes, of
course, not onlyFx and Cx which are always small (see the Proposition in [8]
and Theorem 1 in [7]), but alsoE \ {x}.

A domain, i.e. a connected open set, inS ∈ S with a Jordan closed curve
as boundary is called aJordan domain.

A Jordan domain inS ∈ S the boundary of which is the union of three
segments is called ageodesic triangle.

Auxiliary results

Lemma 1. Let y, z ∈ Ex be distinct, and supposeΣy, Σ
′
y are possibly coinciding

segments from x to y andΣz, Σ
′
z are possibly coinciding segments from x to z .

By Lemma 1 in [8], there exists a domain∆ with boundaryΣy ∪Σ′
y ∪Σz ∪Σ′

z.
Then there is a Jordan arc Jyz in Cx ∪ {y, z} joining y with z . This is the unique
Jordan arc J joining y with z such that J\Cx be finite. Moreover, every point in
Jyz \ {y, z} belongs to∆ and can be joined with x by two segments the union of
which separates y from z.

Proof. Let Tx ⊂ S2 be the Jordan closed curve of all tangent directions atx, and
τy, τ

′
y, τz, τ

′
z ∈ Tx the tangent directions atx of Σy, Σ

′
y, Σz, Σ

′
z. Assume w.l.o.g.

that τy, τ
′
y, τ

′
z, τz lie in this order onTx . Let I , I ′ be two arcs inTx with disjoint

interiors,I having endpointsτy, τz and I ′ the endpointsτ ′y, τ
′
z. Every point in∆

can be joined withx by a segmentΣ with tangent directionτΣ at x. Let∆0 ⊂ ∆
be the set of all points in∆ admitting a segmentΣ with τΣ ∈ I . Similarly, let
∆′

0 be the set of all points in∆ for which τΣ ∈ I ′. We shall show that

Jyz = (∆0 ∩∆′
0) ∪ {y, z}

is a Jordan arc.
The proof of Theorem 1 in [8], which we shall not repeat here, shows that

Jyz is an arc. The fact that we now possibly have only one segment fromx to y
or z is irrelevant. The only important fact is that the maximality of any segment
from x to y or z prevents a segmentΣ joining a point of∆0 ∪∆′

0 with x from
including it. Thus, for any suchΣ, τΣ lies in the interior ofI or I ′. Therefore
∆0 ∩ ∆′

0 ⊂ Cx . To see thatJyz is a Jordan arc, it suffices to take an arbitrary
point u ∈ ∆0 ∩∆′

0 and prove that it is a cutpoint ofJyz (see [5], p. 54). Indeed,
u andx are joined by (at least) two segmentsΣu, Σ

′
u with τΣu ∈ I andτΣ′

u
∈ I ′

and thereforeΣu ∪Σ′
u separatesy from z; moreover (Σu ∪Σ′

u) \ {u} is disjoint
from Cx and does not containy or z, whence

Jyz ∩ (Σu ∪Σ′
u) \ {u} = ∅ .

Now, supposeJ is another Jordan arc joiningy to z with J \ Cx finite. Let
j ∈ J \ Jyz. If j 6∈ ∆ thenJ must crossΣy ∪Σ′

y ∪Σz ∪Σ′
z in a point different

from y and z. So we may suppose w.l.o.g. thatj ∈ ∆0. Consider a maximal
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subarcJ0 of J whose interior lies in∆0 \ Jyz. Let v ∈ J0. If v ∈ Cx , let Σv, Σ
′
v

be two segments fromv to x and let∆v ⊂ ∆0 be the Jordan domain with
boundaryΣv ∪ Σ′

v. If J0 ∩∆v /= ∅ then J0 has at least two points inΣv ∪ Σ′
v,

and we associate tov one of these points, different fromv. If J0 ∩∆v = ∅, we
associate tov the domain∆v. Thus,v /∈ Cx or J0 ∩ ∆v /= ∅ holds for finitely
manyv, while J0∩∆v /= ∅ holds for at most countably manyv, which is absurd.

We shall mostly tacitly, but repeatedly make use of the following result of
Aleksandrov.

Lemma 2. The angles of any geodesic triangle on a convex surface are not
smaller than the corresponding angles of the Euclidean triangle with the same
side-lengths.

For a proof, see [1], p. 132.

Lemma 3. If one angle of a geodesic triangle T on a convex surface is equal to
the corresponding one of the Euclidean triangle T0 with the same side-lengths,
then either T and T0 are isometric or there is a segment passing through T and
joining the other two vertices of T . In the second case both other angles of T are
larger than the corresponding angles of T0.

Proof. Let a, x, y be the vertices of the geodesic triangleT on S ∈ S and
a0, x0, y0 those ofT0; assume that the angle ofT at a is equal to that ofT0 at a0.

First suppose there is no segment fromx to y passing throughT. If the angle
of T at x is larger than that ofT0 at x0 then, by Hilfssatz 4 in [1], p. 279, there is
a pointx′ ∈ ax, for which the angle ata′0 of the Euclidean trianglea′0x′0y′0 with
the same side-lengths asax′y is larger than the angle ata0 of T0. By Lemma 2,
this implies that the angle ata of T is larger than that ata0 of T0, contradicting
the hypothesis. Hence the angles atx andx0 are equal. Analogously, the angles
at y andy0 are equal too and the trianglesT andT0 are isometric.

Suppose now, there is a segment fromx to y meetingTx . Then, of course,
it makes withax an angle smaller than the angle atx of T, but larger or equal
to the angle atx0 of T0. Hence the angle ofT at x is larger than that ofT0 at x0

and, analogously, the angle aty is larger than that aty0.

Lemma 4. Let S ∈ S , x ∈ S , and y∈ Fx. If the full angle of S at y is larger
thanπ then y∈ Cx.

This is part of Theorem 2 in [8].

From convex surfaces to acute triangles

The following result, which will be used to establish the topological characteri-
zation ofFx is perhaps interesting in itself too. It constitutes an unexpected link
between convex surfaces and triangle geometry.

Theorem 0.Let S be a convex surface or a doubly covered 2-dimensional convex
set, and let x, z ∈ S be distinct. Assume that x and z are joined by n segments
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and in the interior of each of the n resulting digons there is a point at distance at
leastρ(x, z) from x (n ≥ 3). Then S is a doubly covered acute triangle, x is the
centre of its circumcircle and z is its orthocentre.

Proof. Join all n points (from then digons) mentioned in the statement, by
segments, withx and z. ThusS is decomposed into 2n geodesic triangles, and
let uxz be one of them. LetU ′, X ′ Z ′ be its angles atu, x, z respectively.
Consider the Euclidean triangle with the same side-lengths and letU0, X0, Z0

denote its angles. ThenU0 ≤ Z0, because the same inequality holds with respect
to the lengths of their opposite sides. HenceX0 + 2Z0 ≥ π. Then, by Lemma 2,
X ′ + 2Z ′ ≥ π. Summing up for all 2n triangles yields

X + 2Z ≥ 2nπ ,

whereX andZ are the full angles ofS at x andz, respectively. Writing this in
terms of the curvaturesω(x) andω(z) of x andz gives

2π(n − 3) +ω(x) + 2ω(z) ≤ 0 .

This holds only if ω(x) = ω(z) = 0, n = 3 and each geodesic triangle has
vanishing curvature and is isosceles with apexx.

Thus S is a polytopal surface with only three verticesu, v, w, hence the
doubly covered triangleuvw, ρ(x, z) = ρ(x, u) = ρ(x, v) = ρ(x, w), both points
x, z lie in the relative interiors of the two different sides ofS, andx is the center
of the circumcircle ofuvw.

It follows that the triangleuvw is acute. Now we only have to look forz.
For each points ∈ uvw there is a shortest path froms to x which meets the
boundary ofuvw. It is easily seen – and known – that its maximal length is
attained atu, v, w, and at the orthocenterh. Just consider the circumcircleC of
uvw and the three circles symmetric toC with respect to the sides ofuvw. Every
three of these four circles are concurrent: atu, v, w, h. Consequentlyz = h.

The antipode Jx and the topological characterization ofFx

Theorem 1. If u, v, w ∈ Fx then either u∈ Jvw or v ∈ Jwu, or w ∈ Juv.

Proof. Suppose the conclusion of the theorem is false. Sou, w /∈ Juv ∩ Jvw.
If Juv ∩ Jvw = {v} then, by the uniqueness established in Lemma 1,v ∈ Juw,
which is supposed false. HenceJuv ∩ Jvw contains a pointz 6∈ {u, v, w}. By
Lemma 1,Juv = Juz∪Jzv, Jvw = Jvz ∪Jzw, Jwu = Jwz ∪Jzu. By the same lemma,
sincez ∈ Juv, there are two different segments fromx to z the union of which
separatesu from v on S. Similarly there are two different segments fromx to z
the union of which separatesv from w, and another two separatingw from u.
Among these segments there must be three distinct, because for just two distinct
segmentsΣ,Σ′ at least two of the pointsu, v, w belong to the same component
of S \ (Σ ∪Σ′). These at most six distinct segments decomposeS into equally
many Jordan domains, only three of which meet{u, v, w}. We can obviously
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choose three of the segments, sayΣu
z , Σ

v
z , Σ

w
z , such thatΣu

z ∪ Σv
z separatesw

from u, v, Σv
z ∪Σw

z separatesu from v, w, andΣw
z ∪Σu

z separatesv from w, u.
Clearly,ρ(x, u) = ρ(x, v) = ρ(x, w) ≥ ρ(x, z). Hence, by Theorem 0,S 6∈ S

and a contradiction is obtained.

The next theorem shows that, for any pointx on a convex surface, for which
Fx contains more than one point, there is a Jordan arcJx including Fx whose
relative interior lies inCx .

Theorem 2. If, for some point x on S∈ S , the set Fx contains more than one
point, then there are two points y1, y2 ∈ Fx such that Fx ⊂ Jy1y2.

Proof. Let y, z ∈ Fx be distinct. By Lemma 1 and using the notation of its
proof, there are three associated Jordan arcsJyz, I , and I ′, such that each point
in Jyz \ {y, z} can be joined withx by two segmentsΣ, Σ′ with τΣ ∈ I and
τΣ′ ∈ I ′. If there are more than two segments fromx to y or z, takeI and I ′ to
be minimal (by inclusion) and rename themIyz andI ′yz. Thus, if there exists a pair
of points u, v ∈ Fx with {u, v} 6⊂ Jyz then, by Theorem 1,Jyz ⊂ Juv, Iyz ⊂ Iuv

I ′yz ⊂ I ′uv. More generally, foru, u′, v, v′ ∈ Fx with u /= v and u′ /= v′, the
inclusionsJuv ⊂ Ju′v′ , Iuv ⊂ Iu′v′ and I ′uv ⊂ I ′u′v′ are equivalent. Now consider
the arcs∪u,v∈Fx Iuv and∪u,v∈Fx I ′uv. Let τ1, τ2 andτ ′1, τ

′
2 be their endpoints in the

orderτ1, τ2, τ
′
2, τ

′
1 aroundx (where possiblyτi = τ ′i ). Thenτi , τ ′i are limit points

of the tangent directionsτΣu , τΣ′
u

of two segmentsΣu, Σ
′
u (of constant length

ρ(x, y)) from x to u, which implies thatΣu andΣ′
u converge to two segments

Σyi , Σ
′
yi

(of same length) fromx to some pointyi , whereΣyi = Σ′
yi

if τi = τ ′i
(i = 1, 2). Theny1, y2 ∈ Fx andτ1, τ2 are the endpoints ofIy1y2. Thus,Iuv ⊂ Iy1y2

and thereforeJuv ⊂ Jy1y2 for any u, v ∈ Fx . The proof is finished.

We define theantipode Jx of x to be Fx if Fx contains a single point, and
the Jordan arc given by Theorem 2 otherwise. Thus,Jx is the unique Jordan arc
A between farthest points, satisfyingFx ⊂ A⊂ Ex .

We know from Theorem 2 in [8] that all points ofFx belong toCx . Many of
them, for example all smooth ones, belong even toCx by Lemma 4. In general
they may not lie inCx . However, there are not many such exceptions.

Corollary. At most two points of Fx lie outside Cx.

Proof. SupposeFx has at least three points not inCx . ThenJx is a Jordan arc.
Now, using Theorem 2 and Lemma 1 (and the fact that a Jordan arc has only
two endpoints), we get a contradiction.

We proved in [8] that every component ofFx is a point or a Jordan arc, but
this was not providing a complete topological characterization ofFx .

Theorem 3.LetΣ be a segment on the sphere S2, S ∈ S , and x∈ S . Then there
exists a homeomorphismφ : S → S2 such thatφ(Fx) ⊂ Σ. Moreover, for any
closed setΞ ⊂ Σ, there exist S∈ S , x ∈ S , and a homeomorphismφ : S → S2

such thatφ(Fx) = Ξ.
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Proof. For the first part, the assertion is obvious ifJx is a single point, and
follows from Theorem 2 by taking a homeomorphismψ : Jx → Σ and extending
ψ−1 to the whole sphere, ifJx is a Jordan arc.

The second part follows from a construction given in [8], p. 11.

Geodesic triangles with vertices in the cut locus

Theorem 4 presents a remarkable geometric property of convex surfaces.

Theorem 4. Let Σxv, Σ
′
xv be two distinct segments between the points x andv

on S∈ S . If the points u, w ∈ S , separated byΣxv ∪Σ′
xv on S , are not closer

thanv to x, then the angle uvw is obtuse or right.

Proof. Let Σuv, Σvw be segments joiningu to v andv to w, respectively. Also,
let Σxu, Σxw be segments fromx to u andw. These four segments and the two
from the statement decompose the surfaceS into four geodesic trianglesTu Tw,
T ′
w andT ′

u, of boundariesΣxu∪Σuv∪Σxv, Σxv∪Σvw∪Σxw, Σxw∪Σvw∪Σ′
xv,

andΣ′
xv ∪Σuv ∪Σxu respectively. LetXu, Xw, X ′

w, X ′
u be their angles atx and

Vu, Vw, V ′
w, V ′

u their angles atv, respectively. LetA, α, α′ and B, β, β′ be the
angles of the Euclidean trianglesT∗

u and T∗
w of opposite side-lengthsρ(v, u),

ρ(u, x), ρ(x, v) andρ(v, w), ρ(w, x), ρ(x, v) respectively. A comparison between
the angles of the four geodesic triangles and their Euclidean counterparts gives

A≤ Xu , A≤ X ′
u , B ≤ Xw , B ≤ X ′

w .

Since

Xu + X ′
u + Xw + X ′

w ≤ 2π ,

we haveA + B ≤ π. Thus,α ≥ α′, andβ ≥ β′ imply

α + β ≥ π − A
2

+
π − B

2
≥ π/2 .

Now, returning to the four geodesic triangles,Vu ≥ α, V ′
u ≥ α, Vw ≥ β and

V ′
w ≥ β, and thereforeVu + Vw ≥ π/2 andV ′

u + V ′
w ≥ π/2, whence the angle

uvw is obtuse or right.

It is interesting to look closer to the case when the angleuvw from the
preceding theorem is right.

In order to formulate our result, consider a circleC ⊂ R2 of radiusr0, the
diameteru0w0 of C and two pointsv0, v

′
0 ∈ C symmetric with respect tou0w0,

at distanceq0 from u0. Let Q(r0, q0) ⊂ R2 be the bounded domain with the
quadrilateralu0v0w0v

′
0 as boundary.

Theorem 5.Under the hypotheses of Theorem 4, if the angle uvw is right then a
part of S is isometric to Q(ρ(x, u), ρ(u, v)).
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Proof. We continue to use the preceding notation.
If, say, Vu + Vw = π/2 thenα + β = π/2, α = α′ = Vu, β = β′ = Vw, A + B = π,
A = Xu = X ′

u, andB = Xw = X ′
w. Thenρ(x, u) = ρ(x, v) = ρ(x, w) and

Xu + X ′
u + Xw + X ′

w = 2π .

It follows thatΣxu andΣxw are the only segments fromx to u andw respectively,
otherwise the full angle atx would be larger than 2π. By Lemma 3,Tu andTw
must be isometric toT∗

u andT∗
w respectively.

About the other two geodesic triangles,T ′
u andT ′

w we know thatX ′
u = A and

X ′
w = B. Let Σ′

uv be the segment fromu to v which separates inT ′
u the pointx

from all other segments fromu to v lying in T ′
u (if any). Then, by Lemma 3, the

geodesic triangleT ′′
u included inT ′

u, of sidesΣxu, Σ′
uv, Σ′

xv, is isometric to the
planar triangleT∗

u . The same argument leads to an analogous geodesic triangle
T ′′
w ⊂ T ′

w isometric toT∗
w. Since the curvature atx vanishes too,

(Tu ∪ Tw ∪ T ′′
u ∪ T ′′

w ∪Σxu ∪Σxw ∪Σxv ∪Σ′
xv) \ {u, v, w}

is isometric to the domainQ(r0, q0) with r0 = ρ(x, u) andq0 = ρ(u, v).

An example. It is interesting to remark that, if the angleuvw is right, then
v ∈ Cu ∪ Cw must hold, but possiblyv 6∈ Cu ∩ Cw.

Indeed, ifv 6∈ Cu ∪ Cw thenS must be isometric toQ(r0, q0) with pairwise
glued sidesu0v0, u0v

′
0 and w0v0, w0v

′
0. Thus the curvature is concentrated in

u0, v0 = v′0 andw0, which implies thatS degenerates to a doubly covered right
triangle, henceS /∈ S .

We present now an example withv 6∈ Cu ∩ Cw, for which, in addition,
u, v, w ∈ Fx .

Let T ⊂ R3 be the planar triangle of verticesu = (u0, 0, 0), w′ = (0, w0, 0),
v = (0, 0, 0) (u0, w0 > 0). Choose a points′ of negative first coordinate inside the
circumcircleC of T. We produce a small isometric deformation of the quadri-
lateral uvs′w′ by keepinguv fixed, the trianglesuvs′ and us′w′ respectively
congruent to themselves, and the third coordinate ofw′ zero. Thusw′ takes a
position w with a negative first coordinate and vanishing third coordinate,s′

takes a positions with unchanged first coordinate and non-vanishing, say posi-
tive, third coordinate, and the intersectiont ′ of us′ with vw′ takes a positiont
with still vanishing first coordinate, but positive third coordinate.

Let s∗, t∗ ∈ R3 be symmetric tos, t (respectively) with respect to the plane
uvw, and consider the boundaryS of conv{u, v, s, s∗, w}. Then, if the deforma-
tion is small enough, no point ofS is farther from the mid-pointx of uw than
u, and there are precisely the two segmentsvtw and vt∗w from v to w on S.
Obviously,uv is the only segment fromu to v, andFx = {u, v, w}.

To produce an analogous example in whichFx /= {u, v, w}. it suffices to take
s′ ∈ C , otherwise proceed as above.

Theorem 4 implies the following property of the cut locus of any convex
surface.



630 T. Zamfirescu

Theorem 6. Let S∈ S , x ∈ S , and u, w ∈ Ex be distinct. Ifv ∈ Juw \ {u, w},
ρ(x, v) ≤ ρ(x, u) andρ(x, v) ≤ ρ(x, w), then the angle uvw is obtuse or right.

Proof. By Lemma 1, there are two segmentsΣxv, Σ
′
xv from x to v whose union

separatesu from w.
Now the conclusion follows from Theorem 4.

Theorem 7. If S ∈ S , x ∈ S , u, w ∈ Fx and v ∈ Juw \ {u, w}, then the angle
uvw is obtuse or right. If it is right then the full angle of S at each of the points
u andv is not larger thanπ.

Proof. By Theorem 6, the angleuvw is obtuse or right.
Suppose now the angleuvw is right. Then, again with the preceding notation,
Σxu andΣxw must be the only segments fromx to u andw respectively, as
established in the proof of Theorem 5. Therefore, by Lemma 4, the full angle of
S at u andw cannot be larger thanπ.

Theorem 8. Any geodesic triangle on S∈ S with vertices in Fx is obtuse or
right. If it is right at one vertex then at both other vertices the full angle of S is
not larger thanπ.

Proof. Let u, v, w be distinct points inFx . In view of Theorem 1, we may
suppose w.l.o.g. thatv ∈ Juw \ {u, w}.

Now, the conclusions follow from Theorem 7.
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