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Introduction

In the very enjoyable book ([3], p. 44) of Craft, Falconer and Guy we read:
“We take... a... convex surfac® in R3.... Steinhaus... asked... what can be said
qualitatively about the set of all “farthest points” from a point Our aim here

is to investigate this question.

Let . be the space of altlosed convessurfaces (i.e. boundaries of open
bounded convex sets) iR® and denote, for ang € . andx € S, by F4 the
set of all farthest points from and byC, the set of all points joined witlx by
at least twosegmentgi.e. shortest paths).

We shall see that to any poirton a closed convex surface we may associate
in a natural way a point or a Jordan akc> Fy lying in the cut locus ok. This
will provide the topological characterization Bf.

Further we shall prove an easily stated, remarkable geometric property of
Fx: any three of its points (if it contains at least three) form an obtuse or right
geodesic triangle.

Moreover, the preceding result is shown to hold for a large class of geodesic
triangles with vertices in the cut locus. Interestingly, the extreme case of a right
triangle does not imply the degeneracy of the surface.

For the reader, to be familiar with Aleksandrov’s book [1] (see also [2), [4])
would be of considerable help.

The usual intrinsic metric 0§ € .7, induced by the Euclidean distance in
R3 will be denoted byp.

Let x € S, and denote by, the cut locusof X, i.e. the set of all endpoints
different fromx of maximal (by inclusion) segments startingxatAlso, letE be
the set of allendpointsof S, i.e. points not interior to any segment 8f The set
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E may be quite large. We proved in [6] that, in the sense of Baire categories, on
most convex surfaces most points are endpoints. Our cut IBguscludes, of
course, not onlyF, and C, which are always small (see the Proposition in [8]
and Theorem 1 in [7]), but alsB \ {x}.

A domain i.e. a connected open set, e . with a Jordan closed curve
as boundary is called dordan domain

A Jordan domain irfS € . the boundary of which is the union of three
segments is called geodesic triangle

Auxiliary results

Lemma 1.Lety,z € E be distinct, and supposBy, X.j, are possibly coinciding
segments from x to y anH,, X} are possibly coinciding segments from x to z.
By Lemma 1 in [8], there exists a domailvwith boundaryXy U Xy U X7 U X7,
Then there is a Jordan argJin C, U {y, z} joining y with z. This is the unique
Jordan arc J joining y with z such that\JC be finite. Moreover, every point in
Jyz \ {y, z} belongs toA and can be joined with x by two segments the union of
which separates y from z.

Proof. Let T, C S? be the Jordan closed curve of all tangent directions, and
7y, Ty, T2, Ty € Tx the tangent directions at of Xy, X7, X7, 5. Assume w.l.o.g.
thatTymy’mz’, 7, lie in this order onTy. Let |, |’ be two arcs inT, with disjoint

interiors,| having endpointsy, 7, andl’ the endpointsy, 7;. Every point inA

can be joined withx by a segment’ with tangent directiorry atx. Let Ag C A

be the set of all points il admitting a segment’ with 75 € 1. Similarly, let
Ap be the set of all points imA for which 75 € 17. We shall show that

Jyz = (AO N Aé)) U {y, Z}

is a Jordan arc.

The proof of Theorem 1 in [8], which we shall not repeat here, shows that
Jyz is an arc. The fact that we now possibly have only one segment frtory
or z is irrelevant. The only important fact is that the maximality of any segment
from x to y or z prevents a segmeti joining a point of Ag U Af with x from
including it. Thus, for any sucl, 75 lies in the interior ofl or I’. Therefore
Ao N Ay C Cx. To see thatly, is a Jordan arc, it suffices to take an arbitrary
pointu € AgN Ay and prove that it is a cutpoint df, (see [5], p. 54). Indeed,
u andx are joined by (at least) two segmemy, 2, with 75, € | and7y, € I’
and thereforeX, U X, separatey from z; moreover £, U X))\ {u} is disjoint
from C, and does not contain or z, whence

J:N(ZyUX)\{u}=0.

Now, suppose] is another Jordan arc joining to z with J \ Cx finite. Let
j €3\ If j ¢ Athend must cross¥y U XY U X; U Y in a point different
fromy andz. So we may suppose w.l.o.g. thate Aq. Consider a maximal
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subarc)y of J whose interior lies inAg \ Jy,. Letv € Jo. If v € Cy, let Xy, X
be two segments from to x and letA, C Ay be the Jordan domain with
boundaryX, U X/. If JonN A, # 0 thenJp has at least two points i, U X/,
and we associate to one of these points, different from If Jo N A, =0, we
associate ta the domainA,,. Thus,v ¢ C, or JoN A, # ( holds for finitely
manywv, while JoN A, # 0 holds for at most countably many which is absurd.
We shall mostly tacitly, but repeatedly make use of the following result of

Aleksandrov.

Lemma 2. The angles of any geodesic triangle on a convex surface are not
smaller than the corresponding angles of the Euclidean triangle with the same
side-lengths.

For a proof, see [1], p. 132.

Lemma 3. If one angle of a geodesic triangle T on a convex surface is equal to
the corresponding one of the Euclidean trianglg With the same side-lengths,
then either T and J are isometric or there is a segment passing through T and
joining the other two vertices of T. In the second case both other angles of T are
larger than the corresponding angles of. T

Proof. Let a, X, y be the vertices of the geodesic triangleon S € . and
ap, X0, Yo those ofTy; assume that the angle dfata is equal to that offy at ag.

First suppose there is no segment frerto y passing througf . If the angle
of T atx is larger than that of at xg then, by Hilfssatz 4 in [1], p. 279, there is
a pointx’ € ax, for which the angle a&} of the Euclidean trianglegxyy, with
the same side-lengths ag’y is larger than the angle ap of To. By Lemma 2,
this implies that the angle at of T is larger than that at, of Ty, contradicting
the hypothesis. Hence the anglexaindxg are equal. Analogously, the angles
aty andyp are equal too and the triangl@sand Ty are isometric.

Suppose now, there is a segment franto y meetingTy. Then, of course,
it makes withax an angle smaller than the anglexabf T, but larger or equal
to the angle aky of To. Hence the angle of atx is larger than that oy at xg
and, analogously, the angle ats larger than that aj.

Lemma 4.Let S€ ., x € S, and y€ Fy. If the full angle of S aty is larger
thanz then ye Cy.

This is part of Theorem 2 in [8].

From convex surfaces to acute triangles

The following result, which will be used to establish the topological characteri-
zation of F is perhaps interesting in itself too. It constitutes an unexpected link
between convex surfaces and triangle geometry.

Theorem 0.Let S be a convex surface or a doubly covered 2-dimensional convex
set, and let xz € S be distinct. Assume that x and z are joined by n segments
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and in the interior of each of the n resulting digons there is a point at distance at
leastp(x, z) from x (n > 3). Then S is a doubly covered acute triangle, x is the
centre of its circumcircle and z is its orthocentre.

Proof. Join all n points (from then digons) mentioned in the statement, by
segments, withk andz. ThusS is decomposed intor2geodesic triangles, and
let uxz be one of them. Lety’, X’ Z’ be its angles at, x, z respectively.
Consider the Euclidean triangle with the same side-lengths andgleXo, Zo
denote its angles. Thdd, < Zy, because the same inequality holds with respect
to the lengths of their opposite sides. Henget 27y > 7. Then, by Lemma 2,

X' +27" > 7. Summing up for all & triangles yields

X+2Z >2nm,

whereX andZ are the full angles of at x andz, respectively. Writing this in
terms of the curvatures(x) andw(z) of x andz gives

2r(n — 3) +w(x) +2w(z) <O0.

This holds only ifw(x) = w(z) = 0, n = 3 and each geodesic triangle has
vanishing curvature and is isosceles with apex

Thus S is a polytopal surface with only three verticesv, w, hence the
doubly covered trianglelvw, p(X,z) = p(X,u) = p(X,v) = p(X,w), both points
X, Z lie in the relative interiors of the two different sides®fandx is the center
of the circumcircle ofuvw.

It follows that the triangleuvw is acute. Now we only have to look far.
For each points € uvw there is a shortest path fromto x which meets the
boundary ofuvw. It is easily seen — and known — that its maximal length is
attained au, v, w, and at the orthocentdr. Just consider the circumcirc@ of
uvw and the three circles symmetric@with respect to the sides ofvw. Every
three of these four circles are concurrentuat, w, h. Consequently = h.

The antipode J; and the topological characterization ofFy

Theorem 1.If u,v,w € Fy then either ue J,,, or v € J,,y, Or w € Jyy.

Proof. Suppose the conclusion of the theorem is false.uSe ¢ Jy, N Jyw.

If Juy N Jpw = {v} then, by the uniqueness established in Lemma &, J,,,,
which is supposed false. Hendg, N J,,, contains a pointz ¢ {u,v,w}. By
Lemma 1,Jy, = JuzU dze, Juw = Juz U dzws Jwu = Juwz U Jzu. By the same lemma,
sincez € Jy,, there are two different segments frooto z the union of which
separatesl from v on S. Similarly there are two different segments fronto z
the union of which separatasfrom w, and another two separating from u.
Among these segments there must be three distinct, because for just two distinct
segmentsy, X' at least two of the points, v, w belong to the same component
of S\ (XU X’). These at most six distinct segments decom@®seto equally
many Jordan domains, only three of which méetv,w}. We can obviously
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choose three of the segments, sgy, X7, X2, such that™y U XY separatesv
fromu, v, XY U XY separates from v, w, and XY’ U XY separates from w, u.

Clearly, p(x, u) = p(x,v) = p(X,w) > p(X,z). Hence, by Theorem & ¢ .
and a contradiction is obtained.

The next theorem shows that, for any painbn a convex surface, for which
Fx contains more than one point, there is a JordanJarincluding Fx whose
relative interior lies inCy.

Theorem 2. If, for some point x on & ., the set k contains more than one
point, then there are two pointg yy» € Fx such that ik C Jy,y,.

Proof. Let y,z € Fx be distinct. By Lemma 1 and using the notation of its
proof, there are three associated Jordan dygd , andl’, such that each point
in Jy; \ {y,z} can be joined withx by two segments”, X’ with 75; € | and
75 € |’ If there are more than two segments franto y or z, takel andl’ to

be minimal (by inclusion) and rename theyn andl;z. Thus, if there exists a pair
of pointsu,v € Fy with {u,v} ¢ J,, then, by Theorem 1}, C Jyy, lyz C luy

ly, C ly,- More generally, foru, u’, v, v" € Fx with u # v andu’ # ¢/, the
inclusionsJy, C Juvr, luw C lwy andly, C 1/, are equivalent. Now consider
the arcsUy ver, luy @NdUy ver, 1/, Let T, 7 and7{, 75 be their endpoints in the
orderry, 12, 74, 71 aroundx (where possibly; = 7). Thenr, 7/ are limit points

of the tangent directionss,, 75, of two segments¥;, X, (of constant length
p(X,y)) from x to u, which implies that¥, and X}, converge to two segments
2y, 2y, (of same length) fronx to some pointy;, where Xy, = X0 if 7 = 7/
(i =1,2). Thenyi,y, € F, and 7, m» are the endpoints df,y,. Thus,l,, C ly,y,
and thereforel,, C Jy,y, for anyu,v € Fy. The proof is finished.

We define theantipode J of x to beFy if Fx contains a single point, and
the Jordan arc given by Theorem 2 otherwise. TlHyss the unique Jordan arc
A between farthest points, satisfyifig C A C Ey.

We know from Theorem 2 in [8] that all points &% belong toCx. Many of
them, for example all smooth ones, belong evel©{dy Lemma 4. In general
they may not lie inCx. However, there are not many such exceptions.

Corollary. At most two points of Flie outside G.

Proof. SupposeF, has at least three points not @. ThenJy is a Jordan arc.
Now, using Theorem 2 and Lemma 1 (and the fact that a Jordan arc has only
two endpoints), we get a contradiction.

We proved in [8] that every component Bf is a point or a Jordan arc, but
this was not providing a complete topological characterizatioR,of

Theorem 3.Let X be a segment on the spherg S € ., and x€ S. Then there
exists a homeomorphismh: S — S? such thatp(F,) C X. Moreover, for any
closed ses C X, there exist Sc ., x € S, and a homeomorphism: S — S?
such thatp(Fy) = =.
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Proof. For the first part, the assertion is obviousJjf is a single point, and
follows from Theorem 2 by taking a homeomorphigm J, — X' and extending
)~ to the whole sphere, i, is a Jordan arc.

The second part follows from a construction given in [8], p. 11.

Geodesic triangles with vertices in the cut locus

Theorem 4 presents a remarkable geometric property of convex surfaces.

Theorem 4. Let Xy, X7, be two distinct segments between the points x @and
on Se .. If the points yw € S, separated by, U X}, on S, are not closer
thanwv to x, then the angle ww is obtuse or right.

Proof. Let Xy, X, be segments joining to v andwv to w, respectively. Also,

let Xy, Yy be segments from to u andw. These four segments and the two
from the statement decompose the surfadato four geodesic triangleg, T,

T! andT,, of boundariesy, U Xy, U Xy, Xy U Xy U Xy Zxew U Zpw U,

and X}, U X, U Xy, respectively. LeX,, X,,, X.,, X be their angles at and

Vu, Vi, V., V| their angles av, respectively. LetA o, o’ andB, 3, 5’ be the
angles of the Euclidean trianglds; and T,; of opposite side-lengthg(v, u),
p(u,x), p(x,v) andp(v, w), p(w,X), p(X,v) respectively. A comparison between
the angles of the four geodesic triangles and their Euclidean counterparts gives

ASXU7 ASX“;, BSXwa BSX»L/U
Since
Xy + X+ Xy + X, <27,

we haveA+B < 7. Thus,a > o/, and3 > 3’ imply

T—A @w—B

+3> + > )

atf= > 5 2 /2
Now, returning to the four geodesic trianglég, > «, V| > «, V,, > 3 and
V. > g, and therefore/, +V,, > n/2 andV, +V, > x/2, whence the angle

uvw is obtuse or right.

It is interesting to look closer to the case when the angle from the
preceding theorem is right.

In order to formulate our result, consider a cir@ec R? of radiusrg, the
diameterugwo of C and two pointsug, vy € C symmetric with respect togwy,
at distanceqy from up. Let Q(ro,qo) C R? be the bounded domain with the
quadrilateraluguowovy as boundary.

Theorem 5.Under the hypotheses of Theorem 4, if the angle is right then a
part of S is isometric to ((x, u), p(u, v)).
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Proof. We continue to use the preceding notation.
If, say,Vy +V,, =7/2 thena+3=7/2,a=a' =V, =5 =V,, A+B =,
A=X, =X}, andB =X, =X/,. Thenp(x, u) = p(X,v) = p(X, w) and

Xy + X[+ Xy + X/, =21 .

It follows that Yy, and Xy, are the only segments frorito u andw respectively,
otherwise the full angle at would be larger than2 By Lemma 3,T, andT,,
must be isometric td; andT,: respectively.

About the other two geodesic triangldg, and T, we know thatX; = A and
X/, = B. Let X},, be the segment froma to v which separates ifi, the pointx
from all other segments from to v lying in T/ (if any). Then, by Lemma 3, the
geodesic triangld,’ included inT,, of sidesXy,, X}.,, X}, is isometric to the
planar triangleT;f. The same argument leads to an analogous geodesic triangle
T/ C T), isometric toT. Since the curvature at vanishes too,

(MUUTL,UT/ UT) U Xy U Dy U Xy U Y )\ {U, v, w}

is isometric to the domai®(ro, o) with ro = p(x, u) andqgo = p(u, v).

An example. It is interesting to remark that, if the angleow is right, then
v € Cy UC,, must hold, but possibly ¢ C, N C,,.

Indeed, ifv ¢ C, U C,, thenS must be isometric t&(rq, o) with pairwise
glued sidesugvo, Ugug and wove, wovg. Thus the curvature is concentrated in
Uo, vo = vy andwg, which implies thatS degenerates to a doubly covered right
triangle, hences ¢ ..

We present now an example with ¢ C, N C,, for which, in addition,
u,v,w € Fy.

Let T C RS be the planar triangle of vertices= (up, 0,0), w’ = (0, wo, 0),

v = (0,0, 0) (up, wo > 0). Choose a poirg’ of negative first coordinate inside the
circumcircleC of T. We produce a small isometric deformation of the quadri-
lateral uvs’w’ by keepinguv fixed, the trianglesuvs’ and us'w’ respectively
congruent to themselves, and the third coordinatevozero. Thusw’ takes a
position w with a negative first coordinate and vanishing third coordinate,
takes a positiors with unchanged first coordinate and non-vanishing, say posi-
tive, third coordinate, and the intersectitnof us’ with vw’ takes a position

with still vanishing first coordinate, but positive third coordinate.

Let s*,t* € R3 be symmetric tcs,t (respectively) with respect to the plane
uvw, and consider the bounda8/of conv{u, v, s,s*, w}. Then, if the deforma-
tion is small enough, no point & is farther from the mid-poink of uw than
u, and there are precisely the two segmertts and vt*w from v to w on S.
Obviously, uv is the only segment from to v, andFyx = {u, v, w}.

To produce an analogous example in whigh# {u, v, w}. it suffices to take
s’ € C, otherwise proceed as above.

Theorem 4 implies the following property of the cut locus of any convex
surface.
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Theorem 6.Let Se€ ., x € S, and yw € E, be distinct. Ifv € Jy, \ {u, w},
p(x,v) < p(x,u) and p(x,v) < p(x,w), then the angle uw is obtuse or right.

Proof. By Lemma 1, there are two segmetify,, 2, from x to v whose union
separates from w.
Now the conclusion follows from Theorem 4.

Theorem 7.1f S € ., x € S, yw € Fx andv € Jy,, \ {u,w}, then the angle
uvw is obtuse or right. If it is right then the full angle of S at each of the points
u andwv is not larger thanm.

Proof. By Theorem 6, the anglavw is obtuse or right.

Suppose now the anglevw is right. Then, again with the preceding notation,
Y and Xy, must be the only segments fromto u and w respectively, as
established in the proof of Theorem 5. Therefore, by Lemma 4, the full angle of
S atu andw cannot be larger than.

Theorem 8. Any geodesic triangle on & . with vertices in k is obtuse or
right. If it is right at one vertex then at both other vertices the full angle of S is
not larger thans.

Proof. Let u, v, w be distinct points inF4. In view of Theorem 1, we may
suppose w.l.0.g. that € Jy,, \ {u, w}.
Now, the conclusions follow from Theorem 7.
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