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Abstract

The parallelism between category and measure fails to hold true for random reals (i.e. reals
having the sequence of digits in some base Chaitin-Martin-Löf random, [7, 4]): constructively,
they are measure-one sets of first category [12]. In this note we strengthen some results in [6] by
constructively proving that a class of pseudo-random reals has a σ-porous complement, so it is
simultaneously residual and of measure-one. As a consequence, we constructively show that the
typical number is a lexicon, i.e. even constructively most numbers do not obey any probability
laws. To achieve our goal we prove a constructive version of (a weak form of) Lebesgue’s Density
Theorem, a result which might be interesting in itself.

1 Introduction

Denote by N, Q the sets of natural and rational numbers, respectively. For every natural b ≥ 2
put Bb = {0, 1, . . . , b− 1}. If X is a set, then X+ denotes the free semigroup generated by X; the
elements of X+ are called words (over X). The length of a word u = u1u2 · · ·un is |u| = n. The
concatenation of the word u with itself i times is denoted by ui. A word u is a prefix of a word v
in case v = uw, for some word w; in this case we write u ⊂ v. A word u is contained in a word v
in case v = xuy, for some words x, y.

For u, v ∈ B+
b ,

Nv(u) = card{1 ≤ j ≤ |u| | j ≡ 1(mod |v|), ujuj+1 · · ·uj+|v|−1 = v},

counts the occurrences of the word v in u. To compute pv(u), the relative frequency of the word
v ∈ B+

b in u ∈ B+
b , we group the elements of u in blocks of length |v| (we ignore the last block in
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case it has length less than |v|) and we divide the number of occurrences of v in the sequence of
blocks by the number of total blocks. Formally we get

pv(u) =
Nv(u)
|u|
|v|

=
|v|Nv(u)

|u|
.

By Bω
b we denote the set of all sequences x = x1x2 · · ·xn · · ·, of elements in Bb. The prefix of

length n of x is the word x(n) = x1x2 · · ·xn. A sequence x contains a word u in case some prefix
of x contains u.

Fix now a base b ≥ 2. The function valb : B+
b ∪ Bω

b → (0, 1) is defined by: valb(x1x2 · · ·xn) =∑n
i=1 xib

−i, valb(x) =
∑∞

i=1 xib
−i. The b-adic expansion seqb(r) of a real number r in the interval

[0, 1) is the unique sequence x = x1x2 · · ·xn · · · ∈ Bω
b containing infinitely many digits different

from b− 1 such that r = valb(x).
To each word w ∈ B+

b we associate the open interval Ib,w = (valb(w), valb(w) + b−|w|) ⊂ [0, 1).
The family {Ib,w}w∈B+

b
is a base for the natural topology on [0, 1]. For a real r ∈ [0, 1) and a word

v ∈ B+
b we define

p+
b,v(r) = lim sup

n→∞
pv(seqb(r)(n)) and p−b,v(r) = lim inf

n→∞
pv(seqb(r)(n)).

We shall assume familiarity with, or access to [13] (for classical measure and category), [3] (for
recursion theory), and [4] (for constructive measure and category).

2 Main Results

Following Jürgensen and Thierrin [9], a real number r ∈ [0, 1] is called disjunctive in base b in case
seqb(r) contains all possible words over Bb. Let us denote by L the set of numbers disjunctive in
any base; call such a number absolutely disjunctive or a lexicon.1 A lexicon contains all writings,
which have been or will be ever written, in any possible language.2 Disjunctivity is a “qualitative”
analogue of normality [1], a (weaker) form of pseudo-randomness.

Let F be the recursive set {(b, α, n, v) | b ≥ 2, α ∈ (0, 1)∩Q, n ≥ 1, v ∈ B+
b }. For (b, α, n, v) ∈ F

define
R+

(b,α,n,v) = {0 ≤ r ≤ 1 | ∃ m ≥ n s. t. pv(seqb(r)(m)) ≥ α},

R−
(b,α,n,v) = {0 ≤ r ≤ 1 | ∃ m ≥ n s. t. pv(seqb(r)(m)) ≤ α}.

It is readily seen that

⋂
b,α,n,v

R−
(b,α,n,v) =

⋂
b,α,v

{0 ≤ r ≤ 1 | p−b,v(r) ≤ α}

=
⋂
b,v

{0 ≤ r ≤ 1 | p−b,v(r) = 0}

= {0 ≤ r ≤ 1 | ∀ b ≥ 2, ∀ v ∈ B+
b , p

−
b,v(r) = 0},

1Disjunctivity is not invariant under the change of base [8].
2For a musical analogue see Karlheinz Essl 1992 interactive, real-time composition for computer-controlled piano

titled “Lexikon-Sonate” at url http://www.ping.at/users/essl/Lexikon-Sonate.html.
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and ⋂
b,α,n,v

R+
(b,α,n,v) = {0 ≤ r ≤ 1 | ∀ b ≥ 2, ∀ v ∈ B+

b , p
+
b,v(r) = 1}.

A set R ⊂ [0, 1] is residual if it contains the intersection of a countable family of open dense
sets. To get a constructive version of this definition we require that the family of open dense sets
is enumerated by a recursively enumerable (r.e.) set, and we have a constructive “witness” to
guarantee that each basic open set Ib,u intersects the family of open dense sets.

We are led to the following definition: A set R ⊂ [0, 1) is constructively residual if there exists
an r.e. set E ⊂ {(b, u,m) ∈ N × N+ × N | b ≥ 2, u ∈ B+

b ,m ≥ 1} and a recursive function
f : N+ ×N → N+ such that the following three conditions hold true:

1. For all b ≥ 2,m ≥ 1, u ∈ B+
b , f(u,m) ∈ B+

b .

2.
⋂∞

m=1

(⋃
(b,w,m)∈E Ib,w

)
⊂ R.

3. For all b ≥ 2, m ≥ 1, u ∈ B+
b we have u ⊂ f(u,m) and (b, f(u,m),m) ∈ E.

The complement of a constructively residual set is a constructive first Baire category set; as
a consequence, a constructively residual set is residual, but the converse is false ([10, 4]). The
statement “constructively, the typical number has, or most numbers have, property P” means that
the set of all numbers with property P is constructively residual.

Lemma 2.1. Constructively, most numbers are in

R+ =
⋂

(b,α,n,v)∈F

R+
(b,α,n,v).

Proof. Fix a recursive bijection ψ : N → F and define the auxiliary recursive functions t :
N×N× ([0, 1) ∩Q) → N and θ : F ×N+ → N+ by

t(q,m, α) =
⌊

αq

m(1− α)

⌋
+ 1,

and
θ((b, α, n, v), u) = u0max(n−|u|,0)vt(max(|u|,n),|v|,α).

Fix (b, α, n, v) ∈ F and u ∈ B+
b . We notice that

pv(θ((b, α, n, v), u)) ≥ |v|
|θ((b, α, n, v), u)|

t(max(|u|, n), |v|, α)

=
|v| t(max(|u|, n), |v|, α)

max(|u|, n) + |v| t(max(|u|, n), |v|, α)
≥ α,

and
m = |θ((b, α, n, v), u)| ≥ n,
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so
Ib,θ((b,α,n,v),u) ⊂ R+

(b,α,n,v).

For every word u ∈ B+
b ,

Ib,u ∩ Ib,θ((b,α,n,v),u) 6= ∅,

so the open set ⋃
u∈B+

b

Ib,θ((b,α,n,v),u)

is dense in [0, 1].

In conclusion, the set of real numbers the lemma speaks about is constructively residual using the
r.e. set

E = {(b, θ((b, α, n, v), u),m) | b ≥ 2, u ∈ B+
b ,m ≥ 1, ψ(m) = ((b, α, n, v), u)},

and the recursive function f : N+ ×N → N+ defined by f(u,m) = θ(ψ(m), u). 2

In view of the fact that for every rational α ∈ (0, 1), and all words u, v ∈ B+
b there exists a word

w ∈ B+
b such that Nv(uw) ≤ α, we can modify the definition of θ in the above proof appropriately

to guarantee the inequality pv(θ((b, α, n, v), u)) ≤ α. So, the set

R− =
⋂

(b,α,n,v)∈F

R−
(b,α,n,v)

is constructively residual. Finally, the set R− ∩R+ is constructively residual too. We have proven:

Theorem 2.2. Constructively, for most numbers r ∈ [0, 1], using any base b and choosing any
word v ∈ B+

b

p−b,v(r) = 0 and p+
b,v(r) = 1.

As an immediate consequence we derive a constructive version of a result due to Oxtoby and
Ulam [12], p. 877:

Corollary 2.3. Constructively, a typical number does not obey the law of large numbers.

Proof. Indeed, the set of all reals r ∈ [0, 1] such that in their dyadic expansion the digits 0 and
1 appear with probability one-half lies in the complement of the constructively residual set from
Theorem 2.2. 2

Random numbers are transcendental, as they are non-computable [4]. Liouville numbers, i.e.
numbers in which arbitrarily sparse ones occur, are transcendental numbers which appear to be
“typically” non-random. Jürgensen and Thierrin [9] have proved the existence, for one arbitrary
base, of uncountably many Liouville disjunctive numbers. In fact, a stronger result can be proven:

Corollary 2.4. Constructively, the typical Liouville number is a lexicon.

Proof. Since the constructively residual set in Theorem 2.2 is a subset of L, constructively most
numbers from [0, 1] are in L. But most reals are constructively Liouville numbers, as the proof
from [13] p. 8 can be readily constructivized. 2
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The set of all numbers each of which is a lexicon is large not only in the sense of construc-
tive category, but also in the sense of constructive measure theory: this set contains all random
numbers [5], so it has constructive measure-one by a result of Martin-Löf [10, 4]. This suggests
that constructively L may contain nearly all elements of [0, 1]. But what does “nearly all” mean?
Classically, a set contains nearly all numbers if its complement is σ-porous [15]. The complement
of a σ-porous set is simultaneously residual and of measure-one (but the complement of a null
set of first category may well not contain nearly all elements, [14]). The fact that a porous set
has measure-one is a consequence of Lebesgue’s Density Theorem [13] which, to the best of our
knowledge [2], has not (yet) been proven constructively.

Call a set M ⊂ [0, 1] constructively megaporous if there exist a base b ≥ 2, a rational number
r ∈ (0, 1) and a recursive function f : B+

b → B+
b such that each interval Ib,u of length less than

r contains a subinterval Ib,f(u) disjoint from M and having length greater than rb−|u|. An r.e.
union of constructively megaporous sets is called constructively σ-megaporous. More precisely,
M is constructively σ-megaporous if M = ∪∞n=1Mn, and there exist two recursive functions T :
N ×N+ → N+, R : N → Q such that Mn is constructively megaporous under T (n, .) and R(n).
We say that “constructively, nearly every point of [0, 1] enjoys property P” if the set of points not
enjoying P is constructively σ-megaporous.

Theorem 2.5. Constructively, nearly every number is a lexicon.

Proof. Let γ : {(b, w) | b ≥ 2, w ∈ B+
b } → N be a recursive bijection, and define the recursive

functions T (n, u) = uw, R(n) = b−|w| − 1, whenever n = γ(b, w). Again, if n = γ(b, w), we put
Ln = {0 ≤ x ≤ 1 | w is not contained in seqb(x)}. It is seen that [0, 1] \ L = ∪∞i=1Li, and each
Ln is constructively megaporous with respect to the base b, the recursive function T (n, .) and the
rational R(n). 2

Recall that, following [10, 4], a set S ⊂ [0, 1] is constructively null (with respect to the Lebesgue
measure µ) if there exists a base b ≥ 2 and an r.e. set G ⊂ B+

b ×N such that

S ⊂
∞⋂

n=1

 ⋃
(x,n)∈G

Ib,x

 ,

and

lim
n→∞

µ

 ⋃
(x,n)∈G

Ib,x

 = 0, constructively.

The following result is a constructive version of (a weak form of) Lebesgue’s Density Theorem.

Theorem 2.6. Every constructively σ-megaporous set is constructively null.

Proof. Due to a theorem of Martin-Löf [10, 4], the union of all constructive null sets is a (maximal)
constructive null set. Consequently, it is enough to prove the theorem for constructive megaporous
sets. Let M be constructively megaporous with respect to the base b, the rational r and the
recursive function f . To estimate the size of M we will generate, in a recursive way, smaller and
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smaller coverings of M . We start with an integer n such that b−n < r. For a word w ∈ B+
b put

E(w) = {y ∈ B+
b | w ⊂ y, |y| = |f(w)|, and y 6= f(w)}. The first covering is

M ⊂
⋃
|u|=n

Ib,u.

The second iteration is

M ⊂
⋃
|u|=n

⋃
v1∈E(u)

Ib,v1 =
⋃
|u|=n

Ib,u \ Ib,f(u).

The measure of this covering is

µ

 ⋃
|u|=n

Ib,u \ Ib,f(u)

 =
∑
|u|=n

µ(Ib,u \ Ib,f(u))

=
∑
|u|=n

(b−|u| − b−|f(u)|)

≤
∑
|u|=n

b−|u|(1− r) = 1− r.

In general, a proof by induction shows that

M ⊂
⋃
|u|=n

⋃
v1∈E(u)

· · ·
⋃

vk∈E(vk−1)

⋃
vk+1∈E(vk)

Ib,vk+1

=
⋃
|u|=n

⋃
v1∈E(u)

· · ·
⋃

vk∈E(vk−1)

Ib,vk
\ Ib,f(vk)

and

µ

 ⋃
|u|=n

⋃
v1∈E(u)

· · ·
⋃

vk∈E(vk−1)

⋃
vk+1∈E(vk)

Ib,vk+1

 < (1− r)k+1.

We conclude that M is constructively null with respect to the r.e. family G = {(w, n) ∈ B+
b ×

N | w ∈ Fn, n = 1, 2, . . .}, where F0 = {u ∈ B+
b | |u| = n} and Fk+1 = {u ∈ B+

b | u ∈
E(w), for some w ∈ Fk}. 2

The above result is stronger than the classical one as, for instance, constructive null sets are
even smaller than classical null sets: the union of all null sets coincides with the whole space, while,
the union of all constructive null sets is a constructive null set [10, 4].

By constructively proving that a typical real number is a lexicon we have shown that most
numbers do not obey any probability laws. In particular, a typical number does not obey the law
of large numbers. The collapse of the law of large numbers has been noticed in non equilibrium
processes, processes which seem to hesitate among various possible directions of evolution (cf.
Nicolis and Prigogine [11]). Finally, our result is “global” and gives no information about specific
numbers (is π a lexicon?).
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