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EXTREME POINTS OF THE DISTANCE FUNCTION

ON CONVEX SURFACES

TUDOR ZAMFIRESCU

Abstract. We first see that, in the sense of Baire categories, many convex
surfaces have quite large cut loci and infinitely many relative maxima of the
distance function from a point. Then we find that, on any convex surface,
all these extreme points lie on a single subtree of the cut locus, with at most
three endpoints. Finally, we confirm (both in the sense of measure and in the
sense of Baire categories) Steinhaus’ conjecture that “almost all” points admit
a single farthest point on the surface.

Introduction

Let S be a closed convex surface, i.e. the boundary of an open bounded convex
set, in the 3-dimensional Euclidean space. We denote by ρ the intrinsic metric of
S, and for x ∈ S let ρx : S → R be defined by ρx(y) = ρ(x, y). In this paper we
investigate the extrema of this function ρx.

By C(x) we denote the cut locus of x, which is the set of all points y ∈ S \ {x}
such that no segment, i.e. shortest path, from x to y can be extended as a segment
beyond y. It is known that C(x) is a tree, which means that any two of its points are
joined by a unique Jordan arc in C(x). By E(x) we denote the set of all endpoints
of the tree C(x), which are the points whose deletion does not disconnect C(x).

The space S of all closed convex surfaces in R3 endowed with the well-known
Pompeiu-Hausdorff metric is a Baire space.

On compact Riemannian surfaces, any cut locus is compact and has Hausdorff
dimension 0 or 1 [13], [8]. The situation is more complicated for arbitrary convex
surfaces. Then the cut locus need not be closed; it can even be residual on the
surface.

If the cut locus is dense in S – and we proved in 1982 that this holds for most
convex surfaces in the sense of Baire categories [20] – then it must have infinite
length, which immediately follows from its arcwise connectedness. Independently,
the existence of convex surfaces with nonrectifiable cut loci was also shown by
Shiohama and Tanaka in [17].

With possibly so large cut loci, it is interesting that the distribution of the
relative maxima of ρx on C(x) is always very nice: they all lie on a single Y-tree,
i.e. a tree with at most three endpoints, in C(x). On the same Y-tree also lie all
relative minima of ρx|C(x) which are not endpoints of C(x). In fact, all critical
points of ρx lie on that Y-tree, except for the case of surfaces S of a very particular
type. This is one of the main results of this paper. It completes our earlier result
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saying that all absolute maxima of ρx (if there are more than one) lie on a single
Jordan subarc of C(x) [26].

The second main result is the answer to a question of H. Steinhaus: Must ρx
have a single absolute maximum for many points x?

The paper is organized as follows. After this introductory section there are
two sections contributing to the motivation for the first main result: the first of
them shows that even compact subsets of the cut locus may have infinite length,
contrary to a result of Hebda in the Riemannian case; the second shows that on
many convex surfaces there are infinitely many extrema of ρx. Finally, the last two
sections contain the main results described above.

Let S be a convex surface in R3. A geodesic is the image of an interval I ⊂
R through a continuous mapping c : I → S, such that every point in I has a
neighbourhood in I on which c is an isometry. If I = R and c is periodic then
c(I) is called a closed geodesic. If I is a compact interval [a, b] then c(I) is called a
geodesic arc; if, moreover, c(a) = c(b) then c(I) is said to be a closed geodesic arc
at c(a).

A tree with four endpoints will be called an H-tree.
We denote by µα the α-dimensional Hausdorff measure.
An open connected set is called a domain.
For any Borel set D ⊂ S, let ω(D) denote its curvature (see [1], p. 207).
The set of points in S joined by at least two segments with x ∈ S is denoted by

Cx. Obviously, Cx ⊂ C(x).
We denote by Mx the set of all relative maxima of ρx, by Fx its subset of all

absolute maxima of ρx, and byQ(J) the set of all relative minima of ρx|J , where J is
an arbitrary Jordan subarc of C(x), minus its two endpoints. Then Qx =

⋃
J Q(J)

includes the set of all relative minima of ρx|C(x)\E(x). Clearly, all these are subsets
of C(x).

Let E ⊂ S be the set of all endpoints of S, i.e. points not interior to any geodesic.
We shall make use of the set S2 of all surfaces S ∈ S possessing a point x ∈ S

with disconnected Mx. This set is obviously open in S.
In any metric space (M, δ), if x ∈ M and ε > 0, then B(x, ε) = {y ∈ M :

δ(x, y) < ε} and K(x, ε) = {y ∈ M : δ(x, y) = ε}.

Nonrectifiable compact subsets of the cut locus

Back in 1935/6 S. B. Myers [13], [14] investigated the cut locus on complete
2-dimensional Riemannian manifolds. He proved that in such a manifold each
connected component of the cut locus is a local tree. In the (general) closed convex
case, the cut locus must be a tree [12]. Also, Myers showed that the cut locus is
triangulable if the metric is real analytic. But H. Gluck and D. Singer [6] have
produced examples of smooth metrics with nontriangulable cut loci.

The situation is worse in the general case of Aleksandrov surfaces (see [17] for a
definition), as can be seen from the arbitrary convex case. Then the cut loci, which
must be closed in the Riemannian case (see Hebda [8]), do not necessarily enjoy
this property and can be dense on the surface. Even more pathologically, while the
subset of all nodes of Cx (points joined by at least three segments with x) can be
dense, C(x) \ Cx and a fortiori E(x) can be residual (see [20], [22], [25]).
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The central result of Hebda [9] states that in any complete 2-dimensional C∞

Riemannian manifold, every compact subset of a cut locus has finite 1-dimensional
Hausdorff measure. This, together with an earlier result of Hebda [8], completes
the solution to Ambrose’s problem in dimension 2. The situation changes when
we drop the differentiability assumptions on the manifold, and Hebda’s result fails
in arbitrary 2-dimensional Aleksandrov spaces. J.-I. Itoh ([10], Theorem B) con-
structed a suitable example. We use a completely different approach showing that,
in fact, most surfaces can serve as examples!

“Most” means “all, except those in a set of the first Baire category”. For other
geometrically relevant, sometimes curious phenomena on convex surfaces, obtained
via Baire categories, see [7], [23], [28].

Lemma 1. [20]. On most closed convex surfaces, most points are endpoints.

Lemma 1 shows that most S ∈ S have the properties described in [17], Examples
2 and 4, pp. 538-540. It also shows that C(x) is residual on most S ∈ S, in contrast
to the measure-theoretic result of Otsu and Shioya [15] implying that µ2(C(x)) = 0
on all S ∈ S.

The following lemma follows from Theorem 1 in [22].

Lemma 2. On any closed convex surface S and for any x ∈ S, the set Cx is of
first Baire category.

We need the following refinement of Lemma 2 in [24].

Lemma 3. Let S ∈ S and x, y, z, u, v ∈ S. (The points u, v may coincide.) Let
Σu, Σv be segments from x to u, respectively v. Let J ⊂ S be an arc with endpoints
u, v such that J ∪ Σu ∪ Σv separates y from z. If no segment from x to any point
in J passes through y or z, then there is a point in J joined with x by two segments
whose union separates y from z.

Proof. Let w ∈ J , and denote by Jw the subarc of J from u to w and by Σw a
segment from x to w.

There exists a point w0 ∈ J such that, for all w ∈ Jw0 , the closed curve ∆w =
Σw ∪ (J \ Jw0) ∪ Σv separates y from z, but for points w 6∈ Jw0 arbitrarily close
to w0, ∆w does not. Then w0 must be joined with x by two segments Σw0 , Σ′w0

,
because any sequence of segments has a subsequence convergent to a segment, and
Σw0 ∪Σ′w0

separates y from z.

These lemmas will be useful in the proof of the main result of this section, which
follows.

Theorem 1. On most closed convex surfaces, for any point x, in any open set
there is a compact subset of Cx of infinite 1-dimensional Hausdorff measure.

Proof. By Lemmas 1 and 2, on most closed convex surfaces S, most points of S
belong to the set E \ Cx.

Consider a point z ∈ Fx and a point y0 ∈ E \ (Cx ∪ {x} ∪ {z}) in the arbitrary
open set O ⊂ S.

Choose η > 0 smaller than both ρ(y0, x) and ρ(y0, z), such that K(y0, η) is a
closed Jordan curve (see [1], p. 383) and D0 = B(y0, η) ⊂ O. Let Σ be the segment
from x to y0.

Take a point y′ ∈ B(y0, η/2) \ Σ and a segment xy′. Then Σ 6⊂ xy′. Choose
y∞ ∈ E ∩D0 ∩B(x, ρ(x, y0)− η/2) such that Σ ∪ xy′ ∪ y0y

′ separates y∞ from z.
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We apply now Lemma 3 to the points x, y = y∞, z ∈ Fx, u = y0 and v = y′, and
obtain a point y1 ∈ y0y

′ joined with x by two segments whose union U separates
y∞ from z; let D1 be the component of S \ U containing y∞.

Put r = ρ(x, y∞) and ε = ρ(x, y1)− r. We have ε > 0, because

r < ρ(x, y0)− η/2 < ρ(x, y0)− ρ(y0, y
′) < ρ(x, y0)− ρ(y0, y1) ≤ ρ(x, y1).

Again by Lemma 3, on K(x, r+ ε/2)∩D1 there must be another point y2 joined
with x by two segments determining another domain D2 ⊂ D1 with y∞ ∈ D2.
Continuing this way, we get the sequence {yn}∞n=1 with yn ∈ K(x, r+ ε/n)∩Dn−1.
This sequence must converge to y∞. Indeed, let y′ be a limit point of {yn}∞n=1.
Then y′ ∈ K(x, r). For each n, ym ∈ Dn for all m ≥ n implies y′ ∈ Dn. But
∩∞n=1Dn has only the point y∞ on K(x, r) because every convergent subsequence of
segments from x to yn tends to a segment from x to y∞, which has only the point
y∞ on K(x, r). Hence y′ = y∞.

Now choose a point

zn ∈ E ∩B(x, r) ∩Dn \Dn+1.

The Jordan arc in the tree C(x) from yn to zn has a subarc Jn from yn to some
point of K(x, r). Clearly, µ1Jn ≥ ε/n, and {Jn}∞n=1 converges to {y∞}. Thus, for
some n0 ∈ N, Jn ⊂ O for all n ≥ n0, the set

L = {y∞} ∪
∞⋃

n=n0

Jn ⊂ C(x) ∩O

is compact, and µ1L = ∞.

Infinite Mx and Qx

Although we saw that on many convex surfaces C(x) can be dense, it is not yet
clear how large the sets Mx and Qx can be.

The set Fx can be infinite, and can even have Hausdorff dimension 1, but this
happens on very few, special surfaces only. (See [24], [26] for more details on Fx.)
When passing to the sets Mx and Qx the situation changes. We shall see here that
on surfaces from a second category set, they are both infinite.

The following follows from Lemma 1 in [26] (see also Lemma 1 in [24]).

Lemma 4. Let S be a convex surface. If x, y, z ∈ S are distinct points, Σy,Σ
′
y are

distinct segments from x to y and Σz,Σ
′
z are distinct segments from x to z, then

there exists a domain ∆ with boundary Σy ∪Σ′y ∪Σz ∪Σ′z and a Jordan arc Jxyz in
Cx joining y with z. Moreover, every point in Jxyz \ {y, z} belongs to ∆ and can be
joined with x by two segments the union of which separates y from z.

Lemma 5. Let S ∈ S, x ∈ S and y, z ∈ Cx. If u ∈ Jxyz is a relative minimum of
ρx|int Jxyz , then u is the midpoint of a closed geodesic arc at x, both subarcs from x
to u are segments, and no other segments connect x to u.

Proof. Suppose ρx(u) is minimal in the neighbourhood N = B(u, ε)∩ Jxyz of u and
ε < min{ρ(u, y), ρ(u, z)}. Let Σ,Σ′ be the two segments from x to u given by
Lemma 4. We only have to show that Σ ∪ Σ′ is a geodesic locally at u. Indeed,
suppose for v ∈ Σ, v′ ∈ Σ′, both in B(u, ε/2), there exists a path P between them
shorter than vu ∪ v′u. Then P must cross Jxyz at some point s, and either the
subpath from v to s is shorter than vu or the one from v′ to s is shorter than v′u.
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But in each case a path from x to Jxyz shorter than Σ is found and s ∈ B(u, ε), in
contradiction with the minimality of ρx(u) in N .

Lemma 5 points out an interesting property of relative minima of ρx|C(x)\E(x) in
the case of convex surfaces. It can be easily extended to any Aleksandrov surface.

The case of Riemannian manifolds is described in [11]. The theorem in [27]
provides an extension to Aleksandrov spaces (see [3] for a definition) and gives
more information in several directions. The following result is part of that theorem,
applied to the particular case of a convex surface. We give it here for completeness.

Proposition 1. Let S ∈ S, x, y ∈ S, and let F be the family of all segments from
x to y. If y is a relative minimum of ρx|C(x) and if F is disconnected, then y is the
midpoint of a closed geodesic arc at x, both subarcs from x to y are segments, and
no other segments connect x to y.

From Lemma 1 in [26] and Lemma 5 we deduce the following.

Lemma 6. Let S ∈ S and x ∈ S. If y ∈ Qx then y is the midpoint of a closed
geodesic arc at x, both subarcs from x to y are segments, and no other segments
connect x to y.

We denote by Ty the space of all tangent directions at y ∈ S. (Ty is a closed
Jordan curve in the unit 2-sphere.) We have µ1(Ty) = 2π − ω({y}).

The following lemma is part of Theorem 2 in [24], except for the use of a relative
maximum of ρx instead of an absolute one. The proof in [24] applies without
change.

Lemma 7. If S ∈ S, x ∈ S and y ∈Mx, then each arc in Ty of length π contains
the tangent direction of a segment from x to y. Thus, if ω({y}) < π, then there are
at least two segments from x to y.

We also need Aleksandrov’s gluing theorem ([1], p. 362) or its polyhedral variant
([1], p. 317); we reproduce here the latter. Consult [1] for details.

Lemma 8. If a 2-manifold M results from gluing together several polygons with
metrics of positive curvature such that the sum of the angles at vertices glued to-
gether is not larger than 2π, then the metric of M is also of positive curvature.

Theorem 2. On most convex surfaces S ∈ S2 there exist a point x and a Jordan
arc J in C(x) containing infinitely many relative maxima of ρx and infinitely many
relative minima of ρx|J .

Proof. Let Sm (m ≥ 3) be the family of all convex surfaces S ∈ S2 such that, for
any point x ∈ S and Jordan arc J ⊂ C(x), ρx|J has at most m− 2 relative minima
or maxima.

To prove the theorem it suffices to show that Sm is nowhere dense for all m ≥ 3.
To this end, let O ⊂ S2 be open and choose a polytopal surface P ′ ∈ O with

curvature less than π at all vertices. There are three points x′, y′, z′ ∈ P ′ such that
y′, z′ ∈Mx′ on P ′. The point x′ need not be a vertex. But the boundary P of the
convex hull of P ′ plus a point x close to x′ and outside P ′ will also have two points
y, z ∈ Mx on P , and moreover x will be a vertex. By Lemma 7, y, z ∈ Cx and, by
Lemma 4, there is a Jordan arc Jxyz ⊂ Cx from y to z.

Since y, z ∈ Mx, there is a point v ∈ intJxyz realizing the absolute minimum of
ρx|Jxyz . By Lemma 5, there is a closed geodesic arc G at x, passing between y and

z, with v as midpoint. Both subarcs of G from x to v are segments.
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We cut P along G and get two pieces P1, P2. Let xi, vi ∈ Pi and Gi ⊂ Pi
correspond to x, v and G, respectively (i = 1, 2). Choose ε ≤ ω({x})/(2m). Let tab
be an isosceles triangle with the sides ta, tb of length ρ(x, v) and with the angle ε
between them.

By Lemma 8, we can glue together P1, P2 and 2m copies tiaibi (i = 1, 2, ..., 2m)
of tab as follows:

(i) t1, t2, ..., t2m, x1, x2 will coincide,
(ii) a1, am+1 and v1 will coincide,
(iii) bm, b2m and v2 will coincide,
(iv) bi, bi+m, ai+1, ai+m+1 will coincide (i = 1, ...,m− 1).
Denote by Pε the resulting polytopal surface. For ε small enough there is a sur-

face P ∗ ∈ O congruent to Pε. Hence we have an isometry i : P1∪P2∪
⋃2m
i=1 tiaibi →

P ∗.
Now let N ⊂ O be a neighbourhood of P ∗ in S2. If N is small enough, then,

on any surface S ∈ N , there are a point x′0 close to x0 = i(x1) = i(x2) and points
a′1, a

′
2, ..., a

′
m ∈ Mx′0 close to i(a1), i(a2), ..., i(am); moreover ω({a}) < π for any

point a ∈ S.
Hence, by applying Lemmas 7 and 4 again as before, we establish the existence

of a Jordan arc J
x′0
a′ia

′
i+1

⊂ Cx′0 lying between the four segments from x′0 to a′i and

a′i+1, so that J
x′0
a′i−1a

′
i
∩ Jx′0a′ia′i+1

= {a′i} (i = 1, ...,m− 1). Then, obviously, ρx has at

least m maxima and m− 1 minima on the Jordan arc
⋃m−1
i=1 J

x′0
a′ia

′
i+1

⊂ Cx.

Thus Sm is nowhere dense for every m ≥ 3, and the theorem is proven.

The Y-tree containing Mx and Qx

In the tree C(x) with its possibly infinitely many branches and uncountably
many endpoints we shall define the antipodal tree of x, a subtree with only at most
three endpoints containing both Mx and Qx. Again some preparatory material is
needed.

A family L of closed geodesic arcs at x ∈ S is called independent if for any L ∈ L
one of the components of S \ L is disjoint from all members of L.

The union of two (possibly coinciding) segments from x ∈ S to some other point
y ∈ S is called a digon at x. The point y is then called the vertex of the digon.

A family D of distinct digons at x is called independent if for any D ∈ D either
(i) the two segments of D are distinct, one of the components of S \D, say ∆, is

disjoint from all members of D, and the angle of D towards ∆ at its vertex y plus
ω({y}) is not less than π, or

(ii) the two segments of D coincide and ω({y}) ≥ π at the vertex y of D (in this
case we write ∆ = ∅).

We call the family D of digons strongly independent if it is independent, and the
curvature of some vertex is larger than π or the two segments of some digon are
distinct.

The next result, in a direction more general than Lemma 9, is given here for its
own interest.

Proposition 2. Any independent family of closed geodesic arcs at some point con-
tains at most three members.
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Proof. Consider the independent family L, take L ∈ L, and let ∆L be the compo-
nent of S \L from the definition of independence. From the definition of a geodesic
arc we deduce that L is an n-gon for some n ∈ N, such that all its angles but one
measure π. Only the angle AL at x (towards ∆L) may be different from π, and is
certainly different from 0. Thus

ω(∆L) = π +AL.

If L contains at least 4 members, then the sum of the curvatures of the domains
{∆L : L ∈ L} is larger than 4π, contradicting ω(S) = 4π.

Lemma 9. Any strongly independent family of digons at some point contains at
most three members. Any independent family of digons at some point contains
at most three members or the surface is a tetrahedron, the digons consist of pairs
of coinciding segments from the point to the vertices of the tetrahedron, and the
curvature of each vertex equals π.

Proof. Consider the independent family D of digons at x ∈ S, take D ∈ D, and let
∆D be the component of S \ D from the definition of independence, and vD the
vertex of D. Then

ω(∆D ∪ {vD}) ≥ π +AD,

where AD is the angle of D at x towards ∆D if ∆D 6= ∅, or 0 otherwise.
If D contains at least 4 members, then from ω(S) = 4π it follows that cardD = 4

and AD = 0 for all D, i.e. the two segments forming each digon coincide, the
curvature of each of the 4 vertices equals π, and the curvature of the complement
of
⋃
D∈D(∆D ∪ {vD}) = {vD : D ∈ D} vanishes. Thus S must be a tetrahedron.

If D is strongly independent, then ω(∆D ∪ {vD}) ≥ π for all D ∈ D, with strict
inequality for some D ∈ D. Hence D cannot contain more than 3 members.

The following result follows from [17], Lemma 2.1, p. 545 (see also [12]).

Lemma 10. Let S ∈ S and x ∈ S, and let A ⊂ C(x) be a Jordan arc with y as an
endpoint. Then A has a definite direction γ at y, and no segment from y to x has
direction γ at y.

Further, if the arc τ1τ2 ⊂ Ty is minimal such that γ ∈ τ1τ2 and in each of the
directions τ1, τ2 there is a segment from y to x, then µ1(τ1γ) = µ1(τ2γ).

Before giving the main result of this section, we recall a similar result about Fx.
We will use it in the next section.

Proposition 3 ([26]). If S ∈ S, x ∈ S and cardFx > 1, then there exists a Jordan
arc in C(x) containing Fx.

By Proposition 3, if x ∈ S and cardFx > 1, then there exists a unique Jordan
arc Jx ⊂ C(x) with both endpoints in Fx such that Fx ⊂ Jx. This arc Jx is called
the antipodal arc of x, and we put Jx = Fx if Fx contains a single point [26].

An extension of this description to all relative maxima of ρx is contained in
Theorem 3.

Theorem 3. For any closed convex surface S and point x ∈ S, there is a Y-tree
in C(x) containing both Mx and Qx.

Proof. Since for any 1, 2, or 3 points in a tree we can find a Y-subtree containing
the points, suppose there are 4 points a1, a2, a3, a4 in Mx ∪ Qx, not contained in
any Y-subtree of C(x). Then the union of all 6 arcs determined on C(x) by the 4
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points is an H-tree H , as it is easily seen. Of course a1, a2, a3, a4 are endpoints of
H .

If ai ∈ Qx, we join ai to x by segments Σi, Σ′i. Since ai 6∈ E(x), by Lemma 6,
Li = Σi ∪Σ′i is a closed geodesic arc at x and, simultaneously, a digon at x as well.

If ai ∈Mx, then consider a Jordan arc A ⊂ H starting at ai and the space Tai of
all tangent directions at ai. Let γ ∈ Tai be the direction of A given by Lemma 10,
and let τ1τ2 be the minimal arc in Tai containing γ such that there is a segment
from ai to x in each of the directions τ1, τ2. By Lemma 7, µ1(τ1τ2) ≤ π. Let Di be
the union of the two segments, a digon at x with vertex ai.

For every i, if the segments of Di are distinct, then the whole H-tree H is disjoint
from one of the two components of S \Di, because C(x) ∩ Di = {ai}. Let ∆i be
this component, and put ∆i = ∅ if the segments of Di coincide. Then ∆1, ...,∆4

are pairwise disjoint. Moreover, if the segments of Di are distinct, then the angle
of Di towards ∆i plus ω({ai}) equals π if ai ∈ Qx, and equals 2π− µ1(τ1τ2) ≥ π if
ai ∈Mx. If the segments coincide, then ai ∈Mx and ω({ai}) = 2π−µ1(τ1τ2) ≥ π.

Therefore the family D = {D1, ..., D4} is independent.
If some point ai belongs to Qx, then Σi 6= Σ′i by Lemma 6, and the family D is

strongly independent, contradicting Lemma 9.
If all points ai belong to Mx, then, by Lemma 9, S is a tetrahedron, there is only

one segment Σ from x to a1, and ω({a1}) = π. But in this case consider a point a′

close to a1, such that the direction of the segment a1a
′ is orthogonal in Ta1 to the

direction of Σ. This point is clearly farther than a1 from x, contradicting a1 ∈Mx.
Hence all points of Mx ∪Qx lie in a Y-subtree of C(x).

In analogy to the antipodal arc we define, for any closed convex surface S and
point x ∈ S, the antipodal tree Yx of x as the minimal (with respect to inclu-
sion) Y-tree in C(x) including both Mx and Qx. The existence of Yx follows from
Theorem 3, and its uniqueness is obvious.

The antipodal tree always includes the antipodal arc, and can itself be a Jordan
arc or a single point.

A point y ∈ S is called critical with respect to x (and ρx) if for any tangent
direction τ ∈ Ty there is a segment from x to y with direction τ ′ in y such that
µ1(ττ

′) ≤ π/2 (see e.g. [4], p. 2).
Lemmas 6 and 7 imply that all points in Qx ∪ Mx are critical. The above

arguments, mainly using Lemma 9, show the following about the set of all points
critical with respect to x.

Theorem 4. For any closed convex surface S and point x ∈ S either there is a
Y-tree in C(x) containing all points critical with respect to x, or S is a tetrahedron
with curvature π at every vertex.

In the exceptional case appearing in Theorem 4, if x is interior to an edge of the
tetrahedron, then C(x) is an H-tree whose endpoints, which are the vertices of the
tetrahedron, are all critical with respect to x.

Points with unique farthest points

In their very nice book ([5], p. 44), Croft, Falconer and Guy write: “We take ... a
... convex surface C in R3. ... Steinhaus ... asked ... what can be said qualitatively
about the set of all “farthest points” from a point x. Examples ... show that it
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need not be connected. Must this set be a single point for “almost all” x on C?”
Our aim here is to answer the last question.

We shall confirm Steinhaus’ guess about the smallness of the set of all x for
which Fx has more than a single point. This will be done with the help of the
notion of porosity, which has the advantage of implying smallness in both senses,
that of measure and that of Baire categories.

In any metric space (M, δ), for example on a surface S ∈ S, the set M is porous
if for each x ∈ M , there exist a number α > 0 and a point y arbitrarily close to
x such that B(y, αδ(x, y)) ∩M = ∅. Any countable union of porous sets in M is
then called σ-porous.

We say that any complement of a σ-porous set in the non-σ-porous space M
contains nearly all points of M.

In Euclidean spaces, by a version of Lebesgue’s density theorem (for example
Theorem 10.2 of [16], p. 129), every porous set has Lebesgue measure zero (see
Zaj́ıček’s Remark 2.9 in [19], p. 318), and therefore a set containing nearly all
elements is large from both the measure and the category points of view. But the
complement of a null set of first category may well not contain nearly all elements,
as Zaj́ıček [19] proved.

From this it immediately follows that, on any S ∈ S, if M ⊂ S is σ-porous, then
µ2(M) = 0 and M is of first Baire category.

For more information on porosity, see [19]; for applications to convexity, see [21].
At least for this section, familiarity with Aleksandrov’s book [1] (or Busemann’s

book [2]) would be of considerable help.

Theorem 5. On any closed convex surface S, for nearly all points x ∈ S, Fx
contains a single point.

Proof. Suppose x ∈ S and Fx contains at least two points. Let Jx be the antipodal
arc defined right after Proposition 3, and y, z its endpoints. Let 0 < ε < ρ(y, z)/4.
We consider a domain D with the closed Jordan curve J as boundary, such that

1) x belongs to D,
2) diamD < ε, and
3) no point of Fu is at distance larger than ε from Fx if u ∈ D ∪ J .
Then J separates x from both y and z, because

ρ(x, y) = ρ(x, z) =
ρ(x, y) + ρ(x, z)

2
≥ ρ(y, z)

2
> ε.

Also, there is no segment from any point in J to z passing through y, because
otherwise its length would be at least ρ(x, y)− ε+ ρ(y, z) and therefore larger than
ρ(x, y) + ε, which is absurd.

We now define an arc A starting at x. If the point x is interior to a segment Σ
starting at z, consider an interior point x′ of Σ such that x ∈ x′z and xx′ ⊂ D, and
then take A = xx′. Suppose now x is not interior to any segment starting at z. Let
Σz, Σ′z be (possibly coinciding) segments from x to z such that the component ∆
of S \ (Σz ∪ Σ′z) containing y is minimal (by inclusion). By Lemma 3, one of the
components of J \ (Σz ∪Σ′z) contains the vertex x′′ of a digon at z which separates
x from y. Lemma 4 provides the Jordan arc Jzx′′x ⊂ Cz ∪ {x} joining x′′ to x. We
define A to be a subarc of Jzx′′x starting at x and lying in D; we may subsequently
need to make A even smaller.

Let z′ ∈ Jx be such that 0 < diamJxzz′ < ε (of course, Jxzz′ ⊂ Jx) and let w ∈ ∆.
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For v ∈ A\{x} we consider the Euclidean triangle of side-lengths ρ(x, v), ρ(v, w),
ρ(w, x), with opposite angles α, γ, β. Then

ρ(w, x) − ρ(v, w)

ρ(x, v)
=

sinβ

sinα
− sin γ

sinα
= cos γ + sin γ

cosα− 1

sinα
.

When v converges to x, then α → 0 and the angle γ converges to the angle γw
between the direction of A at x, which exists by Lemma 10, and the direction of a
certain segment from x to w. Hence

lim
v→x

ρ(w, x) − ρ(v, w)

ρ(x, v)
= cos γw.

This is in particular true for w = z and w = z′. Hence, putting δ = ρ(x, z) −
ρ(x, z′),

lim
v→x

ρ(v, z)− (ρ(v, z′) + δ)

ρ(x, v)
= lim

v→x

ρ(x, z′)− ρ(v, z′)
ρ(x, v)

− lim
v→x

ρ(x, z)− ρ(v, z)

ρ(x, v)

= cos γz′ − cos γz > 0.

Here γz may well equal π.
While from x to z′ there are two segments Σz′ and Σ′z′ , between v and z′ there

might well be just a single segment Σvz′ for arbitrarily small ρ(x, v), tending, when
v → x, to Σz′ , say. Consider the surface S′ obtained from S by deleting the domain
(not containing z) bounded by the closed Jordan curve Σxv∪Σvy∪Σyz′∪Σz′ , where
Σxv, Σvy, Σyz′ are segments from x to v, from v to y, and from y to z′, respectively.
This compact 2-manifold with boundary admits a segment Σ′vz′ from v to z′ in its
intrinsic metric ρ′. We claim that this segment does not lie in the boundary of S′.

Indeed, on one hand, Σvy ∪ Σyz′ is longer than Σxv ∪ Σz′ , because

ρ(v, y) + ρ(y, z′) ≥ ρ(x, y)− ρ(x, v) + ρ(y, z)− ρ(z, z′)

> ρ(x, y) + ρ(x, v) + ρ(y, z)− 3ε > ρ(x, y) + ρ(x, v) + ε > ρ(x, z′) + ρ(x, v).

On the other hand, the angle between Σxv and Σ′z′ (towards S′) converges to the
angle γ∗z′ < π between A and Σ′z′ when v → x, and is therefore smaller than π for
A small enough. Here, the inequality γ∗z′ < π should be explained. The two angles
at x between A and Σz, and between A and Σ′z are, by Lemma 10, equal (to γz).
Now, clearly, γ∗z′ < γz ≤ π. Thus, there are paths from v to z′ in S′ shorter than
Σxv ∪Σ′z′ . Hence neither Σxv ∪Σz′ nor Σvy ∪Σyz′ is a segment in S′, and the claim
is proved.

We analogously get

lim
v→x

ρ(v, z)− (ρ′(v, z′) + δ)

ρ(x, v)
= cos γ∗z′ − cos γz > 0,

where, clearly, γ∗z′ ≥ γz′ .
Let k = (cos γ∗z′ − cos γz)/3. Then, for A small enough,

ρ(v, z)− (ρ(v, z′) + δ)

ρ(x, v)
≥ ρ(v, z)− (ρ′(v, z′) + δ)

ρ(x, v)
> 2k

for any v ∈ A. Now, let w be separated from z by Σvz′ ∪Σ′vz′ , for all v ∈ A. Then
a segment Σxw from x to w cuts Σvz′ or Σ′vz′ . If Σxw ∩ Σvz′ = {w′}, then

ρ(x,w) ≤ ρ(x, z) = ρ(x, z′) + δ ≤ ρ(x,w′) + ρ(w′, z′) + δ,

whence
ρ(w′, w) ≤ ρ(w′, z′) + δ
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and
ρ(v, w) ≤ ρ(v, w′) + ρ(w′, w) ≤ ρ(v, z′) + δ.

If Σxw ∩ Σ′vz′ 6= ∅, then, analogously, ρ(v, w) ≤ ρ′(v, z′) + δ. Hence

ρ(v, z)− ρ(v, w)

ρ(x, v)
> 2k

for any v ∈ A.
Every point u ∈ B(v, kρ(x, v)) is closer to w than to z, because

ρ(u, z)− ρ(u,w) ≥ (ρ(v, z)− ρ(v, u))− (ρ(v, w) + ρ(v, u))

> ρ(v, z)− ρ(v, w)− 2kρ(x, v) =

(
ρ(v, z)− ρ(v, w)

ρ(x, v)
− 2k

)
ρ(x, v) > 0.

Therefore, for each u ∈ B(v, kρ(x, v)), we have Fu ⊂ B(Jxzz′ , ε), where B(Jxzz′ , ε) =⋃
t∈Jx

zz′
B(t, ε).

Now the rest is easy. We show that

Tn = {x ∈ S : diamFx ≥ n−1}
is porous, for any n ∈ N. Indeed, if x ∈ Tn, consider the endpoints y, z of Jx.
By taking ε smaller than both ρ(y, z)/4 and (3n)−1, we found above that, for any
v ∈ A and any u ∈ B(v, kρ(x, v)), we have Fu ⊂ B(Jxzz′ , ε); but diamB(Jxzz′ , ε) <
3ε < n−1, whence B(v, kρ(x, v)) ∩ Tn = ∅.

Thus the set
⋃
n Tn of all x ∈ S with diamFx > 0 is σ-porous, and this finishes

the proof.

Open problems

As usual, many questions remain open. We select here only a few, which we
consider most interesting.

We saw that on any closed convex surface, for nearly all x, cardFx = 1. But not
necessarily for all x. Put

S(n) = {S ∈ S : ∃x ∈ S such that cardFx ≥ n}.
It is easily seen that S(2) is of second Baire category in S. We even believe the
following.

Conjecture 1. S(3) is of second Baire category in S.

H. Steinhaus conjectured that, on more or less smooth closed convex surfaces,
there are points x and y ∈ Fx joined by at least three segments [5].

C. Vı̂lcu [18] disproved this for arbitrary closed convex surfaces. However, his
counterexample essentially possesses points of nondifferentiability.

Conjecture 2 (Steinhaus). Every closed convex surface of class C1 admits points
x and y ∈ Fx joined by at least three segments.

Connected to this, we have the following.

Question. Does every surface S ∈ S possess two points x ∈ S and y ∈ Fx and two
segments joining them with directions τ1, τ2 at y, such that the length of both arcs
into which τ1, τ2 divide Ty is at most π ?

The following problem runs into technical difficulties.

Problem. Generalize Theorem 5 to any Aleksandrov space.
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1955. MR 17:74d

[2] H. Busemann, Convex Surfaces, Interscience Publishers, New York, 1958. MR 21:3900
[3] Y. Burago, M. Gromov and G. Perelman, A. D. Aleksandrov spaces with curvature bounded

below, Russian Math. Surveys 47 (1992), no. 2, 1 - 58. MR 93m:53035
[4] J. Cheeger, M. Gromov, C. Okonek and P. Pansu, Geometric Topology: Recent Develop-

ments, Lecture Notes in Math. 1504, Springer-Verlag, Berlin, 1991. MR 92m:53001
[5] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved problems in geometry, Springer-

Verlag, New York, 1991. MR 92c:52001
[6] H. Gluck, D. Singer, Scattering of geodesic fields I, Ann. Math. (2) 108 (1978) 347-372.

MR 80c:53046
[7] P. Gruber, Baire categories in convexity, in: P. Gruber, J. Wills (eds), Handbook of

Convex Geometry, Elsevier Science, Amsterdam, 1993, 1327-1346. MR 94i:52003
[8] J. Hebda, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc. 299

(1987) 559-572. MR 88d:53035
[9] J. Hebda, Metric structure of cut loci in surfaces and Ambrose’s problem, J. Differential

Geometry 40 (1994) 621-642. MR 95m:53046
[10] J.-I. Itoh, The length of a cut locus on a surface and Ambrose’s problem, J. Differential

Geometry 43 (1996) 642-651. MR 97i:53038
[11] S. Kobayashi, On conjugate and cut loci, Global Differential Geometry 27 (1989) 140-169.
[12] J. Kunze, Der Schnittort auf konvexen Verheftungsflächen, Berlin, Deutscher Verlag der
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