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1. Introduction

The metric projection mapping π
X

plays an important role in nonlinear

approximation theory. Usually X is a closed subset of a Banach space % and, for each

e `%, π
X
(e) is the set, perhaps empty, of all points in X which are nearest to e. From

a classical theorem due to Stec3 kin [7] it is known that, when % is uniformly convex,

the metric projection π
X
(e) is single valued at each typical point e of % (in the sense

of the Baire categories), i.e. at each point e of a residual subset of %. More recently

Zamfirescu [8] has proven that, if X is a typical compact set in 2n (in the sense of

Baire categories) and n& 2, then the metric projection π
X
(e) has cardinality at least

2 at each point e of a dense subset of 2n. This result has been extended in several

directions by Zhivkov [9, 10], who has also considered the case of the metric

antiprojection mapping ν
X

(which associates with each e `% the set ν
X
(e), perhaps

empty, of all `X which are farthest from e). For this mapping De Blasi [2] has shown

that, if % is a real separable Hilbert space with dim%¯­¢ and n is an arbitrary

natural number not less than 2, then, for a typical compact convex set XZ%, the

metric antiprojection ν
X
(e) has cardinality at least n at each point e of a dense subset

of %. A systematic discussion of the properties of the maps π
X

and ν
X
, and additional

bibliography, can be found in Singer [5, 6] and Dontchev and Zolezzi [3].

In the present paper we consider some further properties of the metric projection

mapping π
X
, with X a compact set in a real separable Hilbert space %. If dim%¯n

and 2%n!­¢, it is proven that for a typical compact set XZ%, the metric

projection π
X
(e) has cardinality exactly n­1 at each point e of a dense subset of %,

while the set of those points e `% where π
X
(e) has cardinality at least n­2 is empty.

Furthermore it is shown that, if dim%¯­¢, then for a typical compact set XZ%

the metric projection π
X
(e) has cardinality at least n (for arbitrary n& 2) at each

point e of a dense subset of %. Incidentally we obtain a characterization of the

dimension of the space % by means of a typical property holding in the space of the

compact subsets of %.

2. Notation and auxiliary results

Throughout this paper % denotes a real Hilbert space with dim%& 2, with inner

product ©\,\ª, and induced norm s\s. +% stands for the space of the nonempty
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compact subsets of %, endowed with the Pompeiu–Hausdorff metric h. As is well

known, under the metric h the space +% is complete.

For X `+% and e `% we denote by π
X
(e) the metric projection of e on X, that is

π
X
(e)¯²x `X r sx®es¯ d (X, e)´, (2±1)

where d(X, e)¯min ²sx®es r x `X´. The map π
X

: %U+% defined by (2±1) is called

metric projection of % on X.

Let X `+% and n `., n& 2, be arbitrary. The sets

Mn(X)¯²e `% r cardπ
X
(e)¯n´

Mn
+
(X)¯²e `% r cardπ

X
(e)&n´

are called, respectively, the n-valued locus of π
X
, and the n+-valued locus of π

X
.

A set X in a complete metric space M is called residual in M, if M cX is of the first

Baire category in M. Elements of M enjoying a property shared by all elements of a

set residual in M are said to be typical.

By U
M

(x, r), Uh
M

(x, r) we mean the open, respectively closed, ball in M with centre

x and radius r.

As usual, . stands for the set of integers n& 1, and Q+ for the set of the strictly

positive rationals.

In the sequel we shall use the following topological result contained in an implicit

form in Brouwer [1] which, as shown by Miranda [4], is equivalent to Brouwer’s fixed

point theorem.

B–M T. Let Qθ

a
¯ [a

"
®θ, a

"
­θ]¬I¬[a

n
®θ, a

n
­θ],

θ" 0, be a nondegenerate interval of 2n with centre a¯ (a
"
,… , a

n
) and, for k¯ 1,… ,n

let L³θ

k
¯²(x

"
,… , x

n
) `Qθ

a
r x

k
¯ a

k
³ θ´. Let f

k
: Qθ

a
U2, k¯ 1,… ,n, be n continuous

functions defined on Qθ

a
such that :

f
k
(x)! 0 for every x `L−θ

k
, f

k
(x)" 0 for every x `L+θ

k
,

where x¯ (x
"
,… , x

n
). Then there exists a point xW `Qθ

a
such that f

k
(xW )¯ 0 for k¯

1,… ,n.

The theorem above remains valid also when Qθ

a
is a bounded polyhedron of the

form ²x `2n r r©x®a,u
k
ªr% θ, k¯ 1,… ,n´, where u

"
,… ,u

n
are n linearly independent

vectors of 2n, and accordingly L³θ

k
¯²x `Qθ

a
r ©x®a,u

k
ª¯³θ´, k¯ 1,… ,n.

P 1. Suppose dim%¯n& 2. Let A
!
`+%, e

!
`%, λ" 0 and r" 0 be

arbitrary. Then there exist B `+% and σ" 0, with U+%
(B,σ)ZU+%

(A
!
,λ), such that for

every X `U+%
(B,σ) we have

Mn+"
+

(X)fU%(e
!
, r)1W.

Proof. We adapt an argument from [2]. First we consider the case d(A
!
, e

!
)" 0.

Step 1. Construction of B.

Take a
!
`A

!
so that sa

!
®e

!
s¯ d(A

!
, e

!
) and γ" 0, β" 0 satisfying

1®
λ

4 sa
!
®e

!
s
!γ! 1, γ®

λ#

32 sa
!
®e

!
s#

!β!γ.
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Let u
"
,… ,u

n−"
be n®1 mutually orthogonal vectors of norm 1 contained in the

hyperplane ²x `% r ©x, a
!
®e

!
ª¯ 0´. Let b

!
, b

"
,… , b

n
be given by

b
!
¯ e

!
­γ(a

!
®e

!
)

b
k
¯ e

!
­β(a

!
®e

!
­v

k
, k¯ 1,… ,n®1

b
n
¯ e

!
­β(a

!
®e

!
)®v

"
,

where v
k
¯oγ#®β# sa

!
®e

!
su

k
, and set

B¯²b
!
, b

"
,… , b

n
´eA

!
. (2±2)

Observe that the vectors b
"
®b

!
,… , b

n
®b

!
are linearly independent. Furthermore, we

have:

sb
k
®b

!
s¯o2γ(γ®β) ra

!
®e

!
s, k¯ 1,… ,n

sb
k
®e

!
s¯γ sa

!
®e

!
s, k¯ 0, 1,… ,n.

(2±3)

The latter equality shows that the set ²b
k
´n
k=!

lies on the boundary of the ball

Uh %(e
!
,γ sa

!
®e

!
s). Since d(A

!
, e

!
)"γ sa

!
®e

!
s and the b

k
s are pairwise different we

have

π
B
(e

!
)¯²b

!
, b

"
,… , b

n
´,

where cardπ
B
(e

!
)¯n­1. As γ! 1 and γ®β!λ#}(32 sa

!
®e

!
s#), (2±3) gives sb

k
®b

!
s

!λ}4, k¯ 1,… ,n. Further, sb
!
®a

!
s!λ}4, for sb

!
®a

!
s¯ (1®γ) sa

!
®e

!
s and 1®γ

!λ}(4 sa
!
®e

!
s). Hence, by the triangle inequality, sb

k
®a

!
s!λ}2, k¯ 0, 1,… ,n,

which implies

h(B,A
!
)!λ}2.

Now fix η satisfying

0! η!min (r, sb
!
®a

!
s

4 *e (sb
h
®b

k
s

4 ) h, k¯ 0, 1,… ,n, h1 k* (2±4)

and observe that

Uh %(bh, 2η)fUh %(bk, 2η)¯W, h, k¯ 0, 1,… ,n, h1 k (2±5)

Uh %(e
!
, sb

!
®e

!
s­2η)f(% cU%(e

!
, sa

!
®e

!
s®2η))¯W. (2±6)

Furthermore, for θ" 0 put:

Qθ

e!
¯²x `2n r r©x®e

!
, b

k
®b

!
ªr% θ, k¯ 1,… ,n´

L³θ

k
¯²x `Qθ

e!
r ©x®e

!
, b

k
®b

!
ª¯³θ´, k¯ 1,… ,n.

The polyhedron Qθ

e!
is a bounded neighbourhood of e

!
, whose diameter vanishes as

θU 0. Thus there is a θ" 0 such that

Qθ

e!
ZU%(e

!
, η). (2±7)

For X `U+%
(B, η) we put:

X
k
¯XfUh %(bk, η), k¯ 0, 1,… ,n, Xh ¯Xf(A

!
­Uh %(0, η)). (2±8)

It is easy to verify, by (2±5) and (2±6), that X
!
, X

"
,… ,X

n
, Xh are pairwise disjoint

nonempty compact sets, with

X
!
eX

"
eIeX

n
eXh ¯X. (2±9)
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Step 2. Let η and θ satisfy (2±4) and (2±7). Then there is a σ with

0!σ!min (η,
λ

2* (2±10)

such that for every X `U+%
(B,σ) and k¯ 1,… ,n we have:

d(X
!
, e)®d(X

k
, e)! 0 for every e `L−θ

k
(2±11)

d(X
!
, e)®d(X

k
, e)" 0 for every e `L+θ

k
, (2±12)

where the X
k
s are given by (2±8).

The X
k
s are certainly nonempty and compact, with the above properties, since

σ! η. Let 1% k%n. First we prove (2±11), with X¯B. Clearly B
!
¯²b

!
´ and

B
k
¯²b

k
´ ; thus, for each e `L−θ

k
, we have:

d#(B
!
, e)®d#(B

k
, e)¯ s(b

!
®e

!
)®(e®e

!
)s#®s(b

k
®e

!
)®(e®e

!
)s#

¯ sb
!
®e

!
s#­se®e

!
s#®2©b

!
®e

!
, e®e

!
ª®sb

k
®e

!
s#®se®e

!
s#

­2©b
k
®e

!
, e®e

!
ª

¯ 2©b
k
®b

!
, e®e

!
ª¯®2θ,

and (2±11) is satisfied, with B in the place of X. The proof of (2±12), with B in the place

of X, is similar. Since the multifunctions XjX
k
, k¯ 0, 1,… ,n, are continuous and

the sets L³θ

k
, k¯ 1,… ,n, are compact, there is a σ satisfying (2±10), such that for

every X `U+%
(B,σ), (2±11) and (2±12) are fulfilled.

Step 3. With B given by (2±2) and σ defined in Step 2, the statement of Proposition

1 is true.

ClearlyU+%
(B,σ)ZU+%

(A
!
,λ), forh(B,A

!
)!λ}2andσ!λ}2.LetX `U+%

(B,σ)be

arbitrary. Then we have
Mn+"

+
(X)fU%(e

!
, r)1W. (2±13)

In fact, by Step 2, the n continuous functions ej d(X
!
, e)®d(X

k
, e), k¯ 1,… ,n

defined on the polyhedron Qθ

e!
satisfy (2±11) and (2±12). By the Brouwer–Miranda

theorem, there is a point eW `Qθ

e!
in which all of them vanish simultaneously. Thus

d(X
!
, eW )¯ d(X

k
, eW ), k¯ 1,… ,n. (2±14)

We claim that eW `Mn+"
+

(X)fU%(e
!
, r). In fact, in view of (2±7) and of the definition

of X
k

and Xh , we have:

d(X
k
, eW )% d(X

k
, e

!
)­seW ®e

!
s! sb

k
®e

!
s­2η¯ sb

!
®e

!
s­2η, k¯ 0, 1,… ,n,

and
d(Xh , eW )& d(Xh , e

!
)®seW ®e

!
s" sa

!
®e

!
s®2η.

As η! sa
!
®b

!
s}4, it follows that d(X

k
, eW )! d(Xh , eW ), k¯ 0, 1,… ,n. Combining the

latter inequality with (2±9) and (2±14) gives

d(X, eW )¯ d(X
k
, eW ), k¯ 0, 1,… ,n.

It follows that
X

k
fπ

X
(eW )1W, k¯ 0, 1,… ,n,

whence in each of the n­1 balls Uh %(bk, η) there is at least one point of π
X
(eW ). Since
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these balls are pairwise disjoint, we have cardπ
X
(eW )&n­1. Hence eW `Mn+"

+
(X).

Furthermore eW `U%(e
!
, r), for eW `Qθ

e!
ZU%(e

!
, η) and η! r. Consequently (2±13) is

verified and, under the assumption d(A
!
, e

!
)" 0, Proposition 1 is proved.

Now suppose d(A
!
,e

!
)¯ 0. In this case take Ah `+% such that d(Ah , e

!
)" 0 and

h(Ah ,A
!
)!λ}2.Then there existB `+% andσ" 0,withU+%

(B,σ)ZU+%
(Ah ,λ}2), such

that each X `U+%
(B,σ) satisfies (2±13). As U+%

(B,σ)ZU+%
(A

!
,λ), the statement of

Proposition 1 is satisfied. This completes the proof.

The following proposition can be proved as in [2] (see Lemma 4±1).

P 2. Let % be a real Hilbert space with dim%¯­¢. Let A
!
`+%, e

!
`%,

λ" 0, r" 0 and n `. be arbitrary. Then there exist B `+% and σ" 0, with U+%
(B,σ)Z

U+%
(A

!
,λ), such that for every X `U+%

(B,σ) we have

Mn+"
+

(X)fU%(e
!
, r)1 0.

Now suppose that dim%¯n& 2. Set 0
m

¯²X `+% r cardX¯m´, m `.. For X `0
m
,

X¯²x
"
,… , x

m
´, define

m(X)¯min ²sx
i
®x

j
s r i, j¯ 1,… ,m, i1 j´.

Given n­1 points c
"
,… , c

n+"
`%, we denote by S

c"
…cn+"

any sphere in % containing

c
"
,… , c

n+"
. Observe that S

c"
…cn+"

exists and is unique if and only if for some (and

so for each) r, 1% r%n­1, the set ²c
k
®c

r
r k¯1,… ,n­1; k1 r ´ is linearly

independent.

P 3. Suppose k, n `. and dim%¯n& 2. Then for every A `0
n+k

, A¯
²a

"
,… , a

n+k
´, and ε" 0, there exists B `0

n+k
, B¯²b

"
,… , b

n+k
´, with h(B,A)! ε, such

that for each set ²b
i"
,… , b

in+"

´ of n­1 different points b
ir
`B the following two properties

are satisfied :

(i) there is one and only one sphere S
bi

"
,…,bi

n+"

containing b
i"
,… , b

in+"

;

(ii) S
bi

"
,…,bi

n+"

fB¯²b
i"
,… , b

in+"

´.

Proof. Denote by (P
k
), k `., the statement of the proposition. Clearly (P

"
) holds

true. The proof of (P
k
), for any k `., can be easily established by an induction

argument.

3. Main results

In this section we study the cardinality of the metric projection mapping π
X

for

typical X `+%.

T 1. Let % be a real separable Hilbert and suppose either dim%¯n& 2, or

dim%¯­¢ and n `. arbitrary. Then, for a typical X `+%, the (n­1)+-valued locus

of π
X

is dense in %.

Proof. Let E
!
Z% be countable and dense in %. Define

+W ¯+% c 5
e`E!

5
r`Q+

+n+"
e,r

,

where

+n+"
e,r

¯²X `+% rMn+"
+

(X)fU%(e, r)¯W´.

The set +W is residual in +%. In fact, if A
!
`+% and λ" 0 are arbitrary, by virtue
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of Propositions 1 and 2 (with e
!
¯ e) there exist B `+% and σ" 0, with U+%

(B,σ)Z
U+%

(A
!
,λ), such that for every X `U+%

(B,σ) we have Mn+"
+

(X)fU%(e, r)1W. Thus

+n+"
e,r

is nowhere dense in +%, and hence +W is residual in +%.

Let X `+W be arbitrary. Let u `% and s" 0 be arbitrary. Take e `E
!
and r" 0 so

that U%(e, r)ZU%(u, s). Since X a+n+"
e,r

the set Mn+"
+

(X)fU%(e, r) is nonempty and, a

fortiori, Mn+"
+

(X)fU%(u, s) is so. As u `% and s" 0 are arbitrary, it follows that

Mn+"
+

(X) is dense in %. This completes the proof.

T 2. Let % be a real Hilbert space with dim%¯n& 2. Then, for a typical

X `+%,

(i) the (n­1)-valued locus of π
X

is dense in % ;

(ii) the (n­2)+-valued locus of π
X

is empty.

Proof. For r, p `. denote by .
r,p

the set of all X `+% satisfying the following two

properties :

(q
"
) there exists e« `U%(0, r) with card π

X
(e«)&n­2;

(q
#
) there exists a set ²x

"
,… , x

n+#
´ of n­2 points x

r
`π

X
(e«) such that

m(²x
"
,… , x

n+#
´)" 1}p.

The set .
r,p

is nowhere dense in +%. To see this, given A
!
`+% and λ" 0 arbitrary,

it suffices to show that there exist B `+% and σ" 0 such that

U+%
(B,σ)ZU+%

(A
!
,λ)f(+% c.

r,p
). (3±1)

Since A
!
is compact, there is an A `0

n+k
, for some k `., verifying h(A,A

!
)!λ}4.

By Proposition 3 (with ε¯λ}4) there exists B `0
n+k

, with h(B,A)!λ}4, such that

each set ²b
i"
,… , b

in+"

´ of n­1 different points b
ir
`B satisfies properties (i) and (ii) of

Proposition 3. Hence, for every u `%, there is a set of q points b
ik

`B, with 1% q%
n­1, such that

π
B
(u)¯²b

i"
,… , b

iq
´. (3±2)

The mapping (u,X)jπ
X
(u) from %¬+% to +% is upper semicontinuous, hence

for each u `UW %(0, r) there is a δ(u)" 0 such that, for every v `U%(u, δ(u)) and X `
U+%

(B, δ(u)), we have

π
X
(v)Zπ

B
(u)­U%00,

1

4p1 . (3±3)

As Uh %(0, r) is compact, there is a finite number of points u
j
`Uh %(0, r), j¯ 1,… , d, such

that

Uh %(e, r)Z 5
d

j="

U%(uj
, δ(u

j
)). (3±4)

Now fix σ so that

0!σ!min (δ(u"
),… , δ(u

d
),

λ

2* .
We will show that, with the above choice of B and σ, (3±1) holds true.

It is evident that U+%
(B,σ)ZU%(A

!
,λ), for h(B,A

!
)!λ}2 and σ!λ}2. It remains

to verify that
U+%

(B,σ)Z+% c.
r,p

. (3±5)

To this end, let X `U+%
(B,σ). If cardπ

X
(e«)%n­1 for every e« `U%(e, r), then

(q
"
) fails and hence X a.

r,p
. Now suppose that there is an e« `U%(e, r) for which
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card π
X
(e«)&n­2. In view of (3±4), let e« `U%(uj

, δ(u
j
)), for some j, 1% j% d. Clearly

X `U+%
(B, δ(u

j
)), for σ! δ(u

j
). By virtue of (3±2) and (3±3) (with u¯u

j
), there exists

a set of q points b
ik

`B, with 1% q%n­1, such that

π
X
(e«)Z 5

q

k="

U%0bik, 1

4p1 .
Let ²x

"
,… , x

n+#
´ be an arbitrary set of n­2 points x

i
`π

X
(e«). Since there are at most

n­1 balls U%(bik
, 1}4p), at least one of them must contain two (or more) x

i
s, thus

m(²x
"
,… , x

n+#
´)! 1}2p. Consequently (q

#
) fails and again X a.

r,p
, completing the

proof of (3±5). Hence .
r,p

is nowhere dense in +%.

Let us prove (ii). We have

4
r`.

4
p`.

(+% c.
r,p

)Z²X `+% rMn+#
+

(X)¯W´. (3±6)

In fact, let X be in the set on the left hand side of (3±6). Suppose, on the contrary,

that Mn+#
+

(X)1W, and let e« `% be such that cardπ
X
(e«)&n­2. Let ²x

"
,… , x

n+#
´ be

a set of n­2 points x
i
`π

X
(e«) such that m(²x

"
,… , x

n+#
´)" 0. Take r `. so that e« `

U%(0, r). In view of (3±6), for every p `. we have X a.
r,p

. Hence

m(²x
"
,… , x

n+#
´)%

1

p
,

and, as p `. is arbitrary, a contradiction follows. Consequently Mn+#
+

(X)¯W, and

(3±6) is proved. Furthermore, the set on the right hand side of (3±6) is residual in

+%, for the .
r,p

s are nowhere dense in +%. Thus (ii) is true.

The statement (i) is an immediate consequence of Theorem 1 and of statement (ii).

This completes the proof.

The following theorem gives a characterization of the dimension of % by means of

a typical property holding in the space of the compact subsets of %.

T 3. Let % be a real separable Hilbert space with dim%& 2. Then we have :

(i) dim%¯­¢ if and only if for a typical X `+% the (n­1)+-valued locus of π
X

is

dense in % for each n `. ;

(ii) dim%¯n if and only if, for a typical X `+%, the (n­1)+-valued locus of π
X

is

dense in % while the (n­2)+-valued locus of π
X

is empty.

Proof. The statement (i) follows from Theorems 1 and 2. In (ii) the necessity of the

condition follows from Theorem 2, since for any typical X `+%, Mn+"(X)ZMn+"
+

(X).

To prove the sufficiency, put m¯dim% and observe that m!­¢, by Theorem 1.

Suppose m"n (if m!n the argument is similar). For any typical X `+% we have

Mm+"(X)ZMm+"
+

(X)ZMm+#
+

(X)¯W. This and Theorem 2(i) (with m in the place of n)

yield a contradiction. Hence m¯n, and also (ii) is proved. This completes the proof.
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