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1. Introduction

The metric projection mapping 7, plays an important role in nonlinear
approximation theory. Usually X is a closed subset of a Banach space E and, for each
eelE, my(e) is the set, perhaps empty, of all points in X which are nearest to e. From
a classical theorem due to Steckin [7] it is known that, when E is uniformly convex,
the metric projection 7 (e) is single valued at each typical point e of E (in the sense
of the Baire categories), i.e. at each point e of a residual subset of E. More recently
Zamfirescu [8] has proven that, if X is a typical compact set in R” (in the sense of
Baire categories) and n > 2, then the metric projection 7 (e) has cardinality at least
2 at each point e of a dense subset of R”. This result has been extended in several
directions by Zhivkov |9, 10], who has also considered the case of the metric
antiprojection mapping v, (which associates with each ee[ the set v (e), perhaps
empty, of all € X which are farthest from e). For this mapping De Blasi [2] has shown
that, if E is a real separable Hilbert space with dimE = + 00 and = is an arbitrary
natural number not less than 2, then, for a typical compact convex set X < [E, the
metric antiprojection v y(e) has cardinality at least n at each point e of a dense subset
of E. A systematic discussion of the properties of the maps 7y and vy, and additional
bibliography, can be found in Singer [5, 6] and Dontchev and Zolezzi [3].

In the present paper we consider some further properties of the metric projection
mapping 7y, with X a compact set in a real separable Hilbert space E. If dimE ==
and 2 <n < +o00, it is proven that for a typical compact set X < E, the metric
projection 7y (e) has cardinality exactly n+1 at each point e of a dense subset of E,
while the set of those points e€ E where 7y (e) has cardinality at least n+2 is empty.
Furthermore it is shown that, if dim E = + o0, then for a typical compact set X < E
the metric projection 7 (e) has cardinality at least n (for arbitrary n > 2) at each
point e of a dense subset of E. Incidentally we obtain a characterization of the
dimension of the space E by means of a typical property holding in the space of the
compact subsets of [E.

2. Notation and auxiliary results

Throughout this paper E denotes a real Hilbert space with dim E > 2, with inner
product <.,.>, and induced norm |.|. A stands for the space of the nonempty
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compact subsets of E, endowed with the Pompeiu—Hausdorff metric 2. As is well
known, under the metric 4 the space J#; is complete.
For Xe #; and eeE we denote by 7y (e) the metric projection of e on X, that is

my(e) = {reX|[lv—el| = d(X,e)j, (1)

where d(X,e) = min{||lx—e| |x€X}. The map my: E— A defined by (2:1) is called
metric projection of E on X.
Let X e and neN, n = 2, be arbitrary. The sets

M"(X) ={eel|cardmy(e) = n}
MHX) ={eel|cardmy(e) = n}

are called, respectively, the n-valued locus of 77y, and the n*-valued locus of 7.

A set X in a complete metric space M is called residual in M, if M\ X is of the first
Baire category in M. Elements of M enjoying a property shared by all elements of a
set residual in M are said to be typical.

By Uy, (x,7), Uy(2,r) we mean the open, respectively closed, ball in M with centre
x and radius 7.

As usual, N stands for the set of integers n > 1, and Q" for the set of the strictly
positive rationals.

In the sequel we shall use the following topological result contained in an implicit
form in Brouwer [1] which, as shown by Miranda [4], is equivalent to Brouwer’s fixed
point theorem.

BrouwER-MirRANDA TuHEOREM. Let @) =[a,—0, a,+0]x " x[a,—0, a,+0],
0 > 0, be a nondegenerate interval of R" with centre a = (ay, ..., a,) and, fork=1,....n
let Lt ={(xy,...,2,)€Q% | x), =a, +0}. Let f.: Q) —~R, k=1,....n, be n continuous
Sfunctions defined on Q% such that:

Jfu(x) <O foreveryxely?,  fi(x) > 0foreveryxelL}?

where x = (xy,...,x,). Then there exists a point €@ such that f () =0 for k=
1,...,n.

The theorem above remains valid also when €7 is a bounded polyhedron of the
form{xeR"||Ke—a,u, )| <0,k =1,...,n}, where u,, ..., u, are n linearly independent
vectors of R", and accordingly L’ = {xe@’|{x—a,u,y =+6}, k=1,...,n.

Prorosirion 1. Suppose dimE=n > 2. Let A,e A, e,eE, A >0 and r> 0 be
arbitrary. Then there exist Be Ay and o > 0, with Uy (B, o) < Uy (4., A), such that for
every Xe Uy (B, o) we have

MK 0 Tiey. 1) + 2.

Proof. We adapt an argument from [2]. First we consider the case d(4,,e,) > 0.

Step 1. Construction of B.
Take a,e 4, so that |a,—e,|| = d(4,,¢,) and y > 0, p > 0 satisfying

2
v <1 H2<ﬁ<y.

_7< s fy_i
4““0_60H 32 ”“0_60
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Let u,,...,u,_; be n—1 mutually orthogonal vectors of norm 1 contained in the
hyperplane {xe k| {x,a,—e,> = 0}. Let b,,b,,....b, be given by

by = ey +y(a,—e,)
b, =ey+play—ey+v,, k=1,..,n—1
b, = e,+ fla,—ey) —vy,
where v, = Vy2— 2 |a,—e,| u;, and set
B ={b,,b,,....0,} UA,. (2:2)

Observe that the vectors b; —b,, ..., b, —b, are linearly independent. Furthermore, we
have:

16, =boll = V2y(y=P)lag—el, k=1,....n

23
1Be—eoll = 7 lag—call F=0.1,0 . 3)

The latter equality shows that the set {b,}}_, lies on the boundary of the ball
Up(eg, v lay—e,ll). Since d(A,, e,) > v la,—¢,l| and the b,s are pairwise different we
have

7TB<60) = {b07 bl’ LR bn}>

where cardmgz(e)) =n+1. Asy < Land y—pf < A2/(32 ||a,—e,l|?), (2:3) gives ||b,, —b,|l
<A/4 k=1,...,n Further, |b,—a,| < A/4, for |by—a,| = (1 —7) [la,—e,l and 1 —7y
< A/4 ||lay—e,l). Hence, by the triangle inequality, b, —a,ll <A/2, k=0,1,...,n,
which implies
hMB,A,) < AJ2.
Now fix # satisfying

] by —a 165 — bl
O<77<m1n{7, 1 U 1

hk=0,1,....n, h#k} (2-4)

and observe that
by, 2 N Opby, 29) =, hke=0,1,....n, h=*k (2:5)
Ti(eq, [1bg—eqll +27) N (EN\ Tleq, llag— el —29)) =& (26)
Furthermore, for 6 > 0 put:
Qr, = weR"|[Ke—ep, b, —bp| <0, k=1,....n}
L’ ={we Q) |{x—ep,b—byy =+0}, k=1,..n

The polyhedron @ is a bounded neighbourhood of ¢,, whose diameter vanishes as
60 —0. Thus there is a 0 > 0 such that

@2, < Ule, ). (2:7)
For Xe Uy (B, ) we put:

X =X00ibpn), k=0.1,....n, X=X0n(A,+T0,7)). (2:8)

It is easy to verify, by (2:5) and (26), that X,, X,,....X,. X are pairwise disjoint
nonempty compact sets, with

X,UX, U UX,uX =X. (2:9)
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Step 2. Let 5 and 0 satisfy (2'4) and (2:7). Then there is a o with

0 <o < min {n,g} (2-10)

such that for every Xe L’Z%E(Ba o)and k= 1,...,n we have:
d(Xye)—d(X,,e) <0 foreveryeel;’ (2-11)
d(Xy,e)—d(X,,e) >0 foreveryeel;}?’, (2-12)
where the X, s are given by (2-8).

The X,s are certainly nonempty and compact, with the above properties, since
o<y. Let 1 <k<n First we prove (2:11), with X = B. Clearly B, = {b,} and
B, = {b,}; thus, for each eeL;,?, we have:

d*(By, e) —d*(By, e) = [[(by—ey) — (e—ep) [*— [ (b, —€5) — (e —¢,) [|®

= [lby—eoll* + e —egll* =2 {by— e, e =€) — [[b,— ey || — e — ey ||?
+2{b,,—ey, e —ey)
= 2{b,—by,e—eyy =—20,
and (2-11) is satisfied, with B in the place of X. The proof of (2:12), with B in the place
of X, is similar. Since the multifunctions X+ X,, k =0,1,...,n, are continuous and

the sets L%, k= 1,...,n, are compact, there is a o satisfying (2:10), such that for
every Xe Uy (B, o), (211) and (212) are fulfilled.
Step 3. With B given by (2:2) and o defined in Step 2, the statement of Proposition

1 1s true.

Clearly Uy (B, o) = Uy (A, A),for (B, 4,) < A/2ando < A/2.LetX e Uy (B, o)be
arbitrary. Then we have
MX) N Uiley.r) = . (2:13)

In fact, by Step 2, the n continuous functions e—d(X,,e)—d(X,.e), k=1,....n
defined on the polyhedron Q‘ZD satisfy (2-11) and (2-12). By the Brouwer—Miranda
theorem, there is a point éeQzO in which all of them vanish simultaneously. Thus

d(X,,é) =d(X,,¢), k=1,...,n (2-14)

We claim that ée M (X) 0 Uge,. ). In fact, in view of (2-7) and of the definition

of X, and X, we have:
d(X;. 6) S d(Xp ) + € —eoll < b —eoll +2n = [by—eyl +29, k=0.1,....n,
and . }
d(X= é) = d(X» €y) — ”é_eoH > Hao_e()” —2y.
As 5 < |lay—b,ll /4, it follows that d(X,,¢) < d()N(, é), k=0,1,...,n. Combining the
latter inequality with (2:9) and (2:14) gives

d(X,é\):d(Xk’é\), /CZO,l,...,n.
It follows that
XynNmy(e)+F, k=0,1,....n,

whence in each of the n+ 1 balls Uy(b,,#) there is at least one point of 77 (¢). Since
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these balls are pairwise disjoint, we have cardzy(¢€) = n+1. Hence ée M} (X).
Furthermore ée Uge,,r), for ¢e@ = Ufey,n) and y <r. Consequently (2:13) is
verified and, under the assumption d(4,,e,) > 0, Proposition 1 is proved.

Now suppose d(4,.¢,) = 0. In this case take Ae.#; such that d(4,e,) >0 and
WA, Ay) < A/2.Then there exist Be #; and o > 0, with Uy (B.o) = Uy (4, A/2), such
that each Xe Uy (B, o) satisfies (2:13). As Uy (B, o) = Uy (4,, A). the statement of
Proposition 1 is satisfied. This completes the proof.

The following proposition can be proved as in [2] (see Lemma 4-1).

Prorosrrion 2. Let E be a real Hilbert space with dimE = 4 co. Let A, e Ay, e €L,
A> 0,7 > 0andneN bearbitrary. Then there exist Be Ay and o > 0, with Uy (B, o) =
Uy (Ay, A), such that for every X e Uy (B, o) we have

E E

M (X) 0 Up(ey. 7) % 0.

Now suppose that dimE =n > 2. Set 2, = {X e A |card X = m},meN. For XeZ,,
X ={x,...,x,}, define

m(X) = min{||lv,—x;l|i.j=1,....m, @=*j}

Given n+1 points ¢y, ..., c,,, €E, we denote by S, . any sphere in E containing
Crseees Cyyq- Observe that S, . exists and is unique if and only if for some (and
so for each) r, 1 <r<n+1, the set {¢,—c.|k=1,...,n+1; k%r } is linearly
independent.

ProrosrrionN 3. Suppose k, neN and dim E = n = 2. Then for every Ae %, .. A =
{ag, ..., ), and € > 0, there exists Be#, ., B=1{b,,....b, .}, with h(B,A4) < e, such
that for each set {b; .....b; }of n+1 different points b; € B the following two properties
are satisfied :

(i) there is one and only one sphere S,

(i) Sy, o, OB ={byily o

Proof. Denote by (P,), k€N, the statement of the proposition. Clearly (£,) holds
true. The proof of (F,), for any keN, can be easily established by an induction
argument.

containing b; ,....b

P g’

tn+1

3. Main results
In this section we study the cardinality of the metric projection mapping 7, for
typical X e A

THrOREM 1. Let E be a real separable Hilbert and suppose either dimE =n = 2, or
dim E = + 00 and neN arbitrary. Then, for a typical X € Az, the (n+ 1)"-valued locus
of my is dense in E.

Proof. Let K, = E be countable and dense in E. Define

%}:%\U U #

ecE, reQ" ore
where
H O =X e A [ MTHX) N Uile,r) =}

The set A is residual in . In fact, if A€ A and A > 0 are arbitrary, by virtue
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of Propositions 1 and 2 (with e, = ¢) there exist Be #; and o > 0, with Uy (B, o)
Uy (4, A). such that for every Xe U%E(B,AU) we have M?*1(X) n Ug(e,r) + . Thus
A} is nowhere dense in ¢, and hence 4 is residual in .

Let Xe A be arbitrary. Let ueE and s > 0 be arbitrary. Take ee £, and r > 0 so
that Ug(e,r) = Ug(u, s). Since X ¢4 )'7" the set MY (X) 0 Ug(e, r) is nonempty and, a
Sortiori, MHX) N Ug(u,s) is so. As weE and s> 0 are arbitrary, it follows that
MP(X) is dense in E. This completes the proof.

TuEOREM 2. Let E be a real Hilbert space with dimE = n = 2. Then, for a typical
XeA,

(i) the (n+1)-valued locus of my is dense in E;

(ii) the (n+2)"-valued locus of 7y is empty.

Proof. For r, pe N denote by 4], the set of all X € # satisfying the following two
properties:
(q;) there exists ¢’ € Ui(0,r) with card 7my(e') = n+2;
(q,) there exists a set {x,,....x,.,} of n+2 points x,emy(e) such that
My, e Xy pa}) > 1/
The set A}, is nowhere dense in ;. To see this, given 4 € #; and A > 0 arbitrary,
it suffices to show that there exist Be #; and o > 0 such that

Uw (B,0) = Uy (g, ) N (AN p)- (31)

Since 4, is compact, there is an A €2, ., for some ke N, verifying h(4,4,) < A/4.
By Proposition 3 (with ¢ = A/4) there exists Be %, ,, with (B, 4) < A/4, such that
each set {b; ,....b; }of n+1 different points b, € B satisfies properties (i) and (ii) of
Proposition 3. Hence, for every u€k, there is a set of ¢ points b, € B, with 1 <¢ <
n+1, such that

mp(u) =1{b; ..., biq}. (3-2)

The mapping (u,X)—my(u) from Ex A to A is upper semicontinuous, hence
for each we U(0,r) there is a d(u) > 0 such that, for every ve Ug(u,d(u)) and Xe
Uy (B.d(u)), we have

. 1
Ty (v) € mg(u)+ LrE(O,@). (3-3)
As U(0, 7) is compact, there is a finite number of points u; € U.0.7),j=1,....d, such
that
. a
Ui(e.r) = U Uglu;. 8(uy)). (3-4)
i=1

Now fix o so that

0<o< min{8(u1), ...,8(%),3}.
We will show that, with the above choice of B and o, (3-1) holds true.
Itis evident that Uy (B, o) = U(d,, A), for h(B, 4,) < A/2 and o < A/2. It remains
to verify that
Uy (B.o) = H\ AN, . (3-5)

To this end, let Xe Uy (B,o). If cardmy(e’) < n+1 for every ¢ €Ue,r), then
(¢;) fails and hence X¢.4; ,. Now suppose that there is an e’ € Ug(e,r) for which
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card 7y (¢) = n+2. In view of (3-4), let ¢’ € Ug(u;, 0(u;)), for some j, 1 < j < d. Clearly
XeUy (B, d(u;)), for o < d(u;). By virtue of (3-2) and (3-3) (with u = u;), there exists
a set of ¢ points b; €B, with 1 <g¢ <n+1, such that

a 1
)< oo, ,—]|.
mxle) kgl L[E(b““" 429)
Let {1, ..., x,,,} be an arbitrary set of n+2 points x;em(¢’). Since there are at most
n+1 balls Ug(b;,, 1/4p), at least one of them must contain two (or more) a;s, thus
m({xy, ..., %, ) < 1/2p. Consequently (¢,) fails and again X¢ .4, . completing the
proof of (3-5). Hence .4, , is nowhere dense in J#;.
Let us prove (ii). We have

D’

N NGNS ,) € XA LX) =), (36)
reN peN
In fact, let X be in the set on the left hand side of (3:6). Suppose, on the contrary,
that M7*2(X) £ F, and let ¢’ € E be such that card 7 (¢’) = n+2. Let {z,...., 2, ,,} be
a set of n+2 points x;em(¢’) such that m({x,,...,x,,,}) > 0. Take reN so that e¢’e
U:(0,7). In view of (3:6), for every pe N we have X¢. 1 . Hence

My, 2y 00) < la
P
and, as peN is arbitrary, a contradiction follows. Consequently M"*?(X) =¥, and
(3-6) is proved. Furthermore, the set on the right hand side of (3-6) is residual in
Hg, for the A s are nowhere dense in ;. Thus (ii) is true.

The statement (i) is an immediate consequence of Theorem 1 and of statement (ii).
This completes the proof.

The following theorem gives a characterization of the dimension of E by means of
a typical property holding in the space of the compact subsets of E.

THEOREM 3. Let E be a real separable Hilbert space with dim E = 2. Then we have:

(i) dimE = 4 oo if and only if for a typical X € Az the (n+ 1) -valued locus of 7y is
dense in E for each ne N ;

(it) dim E = n if and only if, for a typical X € Ay, the (n+ 1) -valued locus of my is
dense in E while the (n+ 2)*-valued locus of my is empty.

Proof. The statement (i) follows from Theorems 1 and 2. In (ii) the necessity of the
condition follows from Theorem 2, since for any typical X € #;, M"*1(X) < M"(X).
To prove the sufficiency, put m = dim E and observe that m < + co, by Theorem 1.
Suppose m > n (if m < n the argument is similar). For any typical X e #; we have
M™HHX) < M (X)) < M?2(X) = . This and Theorem 2(i) (with m in the place of n)
yield a contradiction. Hence m = n, and also (ii) is proved. This completes the proof.
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