Cardinality of the metric projection on typical compact sets in Hilbert spaces

BY F. S. DE BLASI

Centro Vito Volterra, *Universita*[*di Roma* II (*Tor Vergata*), *Via della Ricerca Scientifica*, 00133 *Roma – Italy*

T. I. ZAMFIRESCU

Fachbereich Mathematik, *Universita*X*t Dortmund*, 44221 *Dortmund*, *Germany*

(*Received* 6 *June* 1997)

1. *Introduction*

The metric projection mapping π_X plays an important role in nonlinear approximation theory. Usually X is a closed subset of a Banach space $\mathbb E$ and, for each $e \in \mathbb{E}, \pi_X(e)$ is the set, perhaps empty, of all points in *X* which are nearest to *e*. From a classical theorem due to Steckin $[7]$ it is known that, when $\mathbb E$ is uniformly convex, the metric projection $\pi_X(e)$ is single valued at each typical point *e* of $\mathbb E$ (in the sense of the Baire categories), i.e. at each point e of a residual subset of E . More recently Zamfirescu $\lceil 8 \rceil$ has proven that, if X is a typical compact set in \mathbb{R}^n (in the sense of Baire categories) and $n \geq 2$, then the metric projection $\pi_X(e)$ has cardinality at least 2 at each point e of a dense subset of \mathbb{R}^n . This result has been extended in several directions by Zhivkov [**9**, **10**], who has also considered the case of the metric antiprojection mapping v_X (which associates with each $e \in \mathbb{E}$ the set $v_X(e)$, perhaps empty, of all $\in X$ which are farthest from *e*). For this mapping De Blasi [2] has shown that, if $\mathbb E$ is a real separable Hilbert space with dim $\mathbb E = +\infty$ and *n* is an arbitrary natural number not less than 2, then, for a typical compact convex set $X \subset \mathbb{E}$, the metric antiprojection $v_X(e)$ has cardinality at least *n* at each point *e* of a dense subset of \mathbb{E} . A systematic discussion of the properties of the maps π_X and ν_X , and additional bibliography, can be found in Singer [**5**, **6**] and Dontchev and Zolezzi [**3**].

In the present paper we consider some further properties of the metric projection mapping π_X , with *X* a compact set in a real separable Hilbert space $\mathbb E$. If dim $\mathbb E = n$ and $2 \le n < +\infty$, it is proven that for a typical compact set $X \subset \mathbb{E}$, the metric projection $\pi_X(e)$ has cardinality exactly $n+1$ at each point *e* of a dense subset of \mathbb{E} , while the set of those points $e \in \mathbb{E}$ where $\pi_X(e)$ has cardinality at least $n+2$ is empty. Furthermore it is shown that, if dim $\mathbb{E} = +\infty$, then for a typical compact set $X \subset \mathbb{E}$ the metric projection $\pi_X(e)$ has cardinality at least *n* (for arbitrary $n \geq 2$) at each point e of a dense subset of E . Incidentally we obtain a characterization of the dimension of the space $\mathbb E$ by means of a typical property holding in the space of the compact subsets of E .

2. *Notation and auxiliary results*

Throughout this paper $\mathbb E$ denotes a real Hilbert space with dim $\mathbb E \geq 2$, with inner product $\langle \,\ldots \,\rangle$, and induced norm $\|\cdot\|$. $\mathscr{K}_{\mathbb{F}}$ stands for the space of the nonempty compact subsets of \mathbb{E} , endowed with the Pompeiu–Hausdorff metric h . As is well known, under the metric *h* the space \mathscr{K}_{F} is complete.

For $X \in \mathscr{K}_{\mathbb{F}}$ and $e \in \mathbb{E}$ we denote by $\pi_X(e)$ the metric projection of *e* on *X*, that is

$$
\pi_X(e) = \{ x \in X \mid ||x - e|| = d(X, e) \},\tag{2.1}
$$

where $d(X, e) = \min \{ ||x - e|| \mid x \in X \}$. The map $\pi_X : \mathbb{E} \to \mathscr{K}_{\mathbb{F}}$ defined by (2.1) is called metric projection of E on X .

Let $X \in \mathcal{K}_{\mathbb{E}}$ and $n \in \mathbb{N}$, $n \geq 2$, be arbitrary. The sets

$$
M^{n}(X) = \{e \in \mathbb{E} \mid \operatorname{card} \pi_{X}(e) = n\}
$$

$$
M_{+}^{n}(X) = \{e \in \mathbb{E} \mid \operatorname{card} \pi_{X}(e) \geq n\}
$$

are called, respectively, the *n*-valued locus of π_X , and the *n*⁺-valued locus of π_X .

A set *X* in a complete metric space *M* is called residual in *M*, if $M \setminus X$ is of the first Baire category in *M*. Elements of *M* enjoying a property shared by all elements of a set residual in *M* are said to be typical.

By $U_M(x, r)$, $\tilde{U}_M(x, r)$ we mean the open, respectively closed, ball in *M* with centre *x* and radius *r*.

As usual, $\mathbb N$ stands for the set of integers $n \geq 1$, and Q^+ for the set of the strictly positive rationals.

In the sequel we shall use the following topological result contained in an implicit form in Brouwer [**1**] which, as shown by Miranda [**4**], is equivalent to Brouwer's fixed point theorem.

BROUWER-MIRANDA THEOREM. Let $Q_a^{\theta} = [a_1 - \theta, a_1 + \theta] \times \cdots \times [a_n - \theta, a_n + \theta]$, $\theta > 0$, *be a nondegenerate interval of* \mathbb{R}^n *with centre a* = (a_1, \ldots, a_n) *and*, *for* $k = 1, \ldots, n$ let $L_k^{\pm \theta} = \{(x_1, \ldots, x_n) \in Q_a^{\theta} | x_k = a_k \pm \theta\}$. Let $f_k: Q_a^{\theta} \to \mathbb{R}$, $k = 1, \ldots, n$, be *n* continuous $\mathit{functions}$ defined on Q_a^{θ} such that:

$$
f_k(x) < 0
$$
 for every $x \in L_k^{-\theta}$, $f_k(x) > 0$ for every $x \in L_k^{+\theta}$,

where $x = (x_1, \ldots, x_n)$. Then there exists a point $\hat{x} \in Q_a^{\theta}$ such that $f_k(\hat{x}) = 0$ for $k = 0$ 1,*…*, *n*.

The theorem above remains valid also when Q_a^{θ} is a bounded polyhedron of the $\text{form } \{x \in \mathbb{R}^n \mid |\langle x-a, u_k \rangle| \leq \theta, k=1,\ldots,n\},\text{ where } u_1,\ldots,u_n \text{ are } n \text{ linearly independent.}$ vectors of \mathbb{R}^n , and accordingly $L_k^{\pm \theta} = \{x \in Q_a^{\theta} | \langle x - a, u_k \rangle = \pm \theta \}, k = 1, ..., n$.

PROPOSITION 1. Suppose dim $\mathbb{E} = n \geq 2$. Let $A_0 \in \mathcal{K}_{\mathbb{E}}$, $e_0 \in \mathbb{E}$, $\lambda > 0$ and $r > 0$ be *arbitrary. Then there exist* $B \in \mathscr{K}_{\mathbb{E}}$ *and* $\sigma > 0$, *with* $U_{\mathscr{K}_{\mathbb{E}}}(B, \sigma) \subset U_{\mathscr{K}_{\mathbb{E}}}(A_0, \lambda)$, *such that for* $every\ X\!\in\!U_{\!\mathscr{K}_{\mathbb{E}}}(B,\sigma)\ we\ have$

$$
M^{n+1}_+(X) \cap U_{\mathbb{E}}(e_0, r) \neq \varnothing.
$$

Proof. We adapt an argument from [2]. First we consider the case $d(A_0, e_0) > 0$.

Step 1. Construction of *B*.

Take $a_0 \in A_0$ so that $||a_0 - e_0|| = d(A_0, e_0)$ and $\gamma > 0$, $\beta > 0$ satisfying

$$
1-\frac{\lambda}{4\left\Vert a_{0}-e_{0}\right\Vert }\leq \gamma<1,\quad\gamma-\frac{\lambda^{2}}{32\left\Vert a_{0}-e_{0}\right\Vert ^{2}}<\beta<\gamma.
$$

Let u_1, \ldots, u_{n-1} be $n-1$ mutually orthogonal vectors of norm 1 contained in the hyperplane $\{x \in \mathbb{E} \mid \langle x, a_0 - e_0 \rangle = 0\}$. Let b_0, b_1, \ldots, b_n be given by

$$
b_0 = e_0 + \gamma(a_0 - e_0)
$$

\n
$$
b_k = e_0 + \beta(a_0 - e_0 + v_k, \quad k = 1, ..., n-1
$$

\n
$$
b_n = e_0 + \beta(a_0 - e_0) - v_1,
$$

where $v_k = \sqrt{\gamma^2 - \beta^2} ||a_0 - e_0|| u_k$, and set

$$
B = \{b_0, b_1, \dots, b_n\} \cup A_0.
$$
 (2.2)

Observe that the vectors $b_1 - b_0, \ldots, b_n - b_0$ are linearly independent. Furthermore, we have:

$$
||b_k - b_0|| = \sqrt{2\gamma(\gamma - \beta)} |a_0 - e_0||, \quad k = 1, ..., n
$$

$$
||b_k - e_0|| = \gamma ||a_0 - e_0||, \qquad k = 0, 1, ..., n.
$$
 (2.3)

The latter equality shows that the set ${b_k}_{k=0}^n$ lies on the boundary of the ball $\tilde{U}_{\mathbb{E}}(e_0, \gamma \|a_0 - \tilde{e_0}\|)$. Since $d(A_0, e_0) > \gamma \|a_0 - e_0\|$ and the b_k s are pairwise different we have

$$
\pi_B(e_0) = \{b_0, b_1, \ldots, b_n\},
$$

where card $\pi_B(e_0) = n + 1$. As $\gamma < 1$ and $\gamma - \beta < \lambda^2/(32 ||a_0 - e_0||^2)$, (2.3) gives $||b_k - b_0||$ $\langle \lambda/4, k=1,\ldots, n$. Further, $||b_0 - a_0|| \langle \lambda/4, \text{ for } ||b_0 - a_0|| = (1-\gamma) ||a_0 - e_0||$ and $1-\gamma$ $\langle \lambda/(4 \|a_0 - e_0\|)$. Hence, by the triangle inequality, $\|b_k - a_0\| \langle \lambda/2, k = 0, 1, ..., n$, which implies

$$
h(B, A_0) < \lambda/2.
$$

Now fix η satisfying

$$
0 < \eta < \min\left\{r, \frac{\|b_0 - a_0\|}{4}\right\} \cup \left\{\frac{\|b_h - b_k\|}{4} \, \middle| \, h, k = 0, 1, \dots, n, \quad h + k\right\} \tag{2.4}
$$

and observe that

$$
\tilde{U}_{\mathbb{E}}(b_h, 2\eta) \cap \tilde{U}_{\mathbb{E}}(b_k, 2\eta) = \varnothing, \quad h, k = 0, 1, \dots, n, \quad h + k \tag{2.5}
$$

$$
\tilde{U}_{\mathbb{E}}(e_0,\|b_0-e_0\|+2\eta)\cap(\mathbb{E}\setminus U_{\mathbb{E}}(e_0,\|a_0-e_0\|-2\eta))=\varnothing. \eqno(2.6)
$$

Furthermore, for $\theta > 0$ put:

$$
\begin{split} Q^\theta_{e_0} &= \{x\!\in\!\mathbb{R}^n\,|\,|\langle x\!-\!e_0,b_k\!-\!b_0\rangle|\leqslant\theta,\quad k=1,\ldots,n\}\\ L^{\pm\theta}_k &= \{x\!\in\!Q^\theta_{e_0}|\,\langle x\!-\!e_0,b_k\!-\!b_0\rangle=\pm\theta\},\quad k=1,\ldots,n. \end{split}
$$

The polyhedron $Q_{e_0}^{\theta}$ is a bounded neighbourhood of e_0 , whose diameter vanishes as $\theta \rightarrow 0$. Thus there is a $\theta > 0$ such that

$$
Q_{e_0}^{\theta} \subset U_{\mathbb{E}}(e_0, \eta). \tag{2.7}
$$

For $X \in U_{\mathscr{K}_{\mathbb{E}}}(B, \eta)$ we put:

$$
X_k = X \cap \tilde{U}_{\mathbb{E}}(b_k, \eta), \quad k = 0, 1, ..., n, \quad \tilde{X} = X \cap (A_0 + \tilde{U}_{\mathbb{E}}(0, \eta)). \tag{2.8}
$$

It is easy to verify, by (2.5) and (2.6), that $X_0, X_1, \ldots, X_n, \tilde{X}$ are pairwise disjoint nonempty compact sets, with

$$
X_0 \cup X_1 \cup \cdots \cup X_n \cup \tilde{X} = X.
$$
 (2.9)

Step 2. Let η and θ satisfy (2.4) and (2.7). Then there is a σ with

$$
0 < \sigma < \min\left\{\eta, \frac{\lambda}{2}\right\} \tag{2.10}
$$

such that for every $X \in U_{\mathscr{K}_{E}}(B, \sigma)$ and $k = 1, \ldots, n$ we have:

$$
d(X_0, e) - d(X_k, e) < 0 \quad \text{for every } e \in L_k^{-\theta} \tag{2.11}
$$

$$
d(X_0, e) - d(X_k, e) > 0 \quad \text{for every } e \in L_k^{+\theta}, \tag{2.12}
$$

where the X_k s are given by (2.8) .

The X_k s are certainly nonempty and compact, with the above properties, since $\sigma < \eta$. Let $1 \leq k \leq n$. First we prove (2:11), with $X = B$. Clearly $B_0 = \{b_0\}$ and $B_k = \{b_k\}$; thus, for each $e \in L_k^{-\theta}$, we have:

$$
\begin{aligned} d^2(B_0,e)-d^2(B_k,e)&=\|(b_0-e_0)-(e-e_0)\|^2-\|(b_k-e_0)-(e-e_0)\|^2\\ &=\|b_0-e_0\|^2+\|e-e_0\|^2-2\left\langle b_0-e_0,e-e_0\right\rangle-\|b_k-e_0\|^2-\|e-e_0\|^2\\ &\quad+2\left\langle b_k-e_0,e-e_0\right\rangle\\ &=2\left\langle b_k-b_0,e-e_0\right\rangle=-2\theta, \end{aligned}
$$

and (2.11) is satisfied, with *B* in the place of *X*. The proof of (2.12) , with *B* in the place of *X*, is similar. Since the multifunctions $X \mapsto X_k$, $k = 0, 1, \ldots, n$, are continuous and the sets $L_k^{\pm \theta}$, $k = 1, \ldots, n$, are compact, there is a σ satisfying (2.10), such that for every $X \in U_{\mathscr{K}_{E}}(B, \sigma)$, (2·11) and (2·12) are fulfilled.

Step 3. With *B* given by (2.2) and σ defined in Step 2, the statement of Proposition 1 is true.

 $\text{Clearly } U_{\mathscr{K}_{\mathbb{F}}}(B, \sigma) \subset U_{\mathscr{K}_{\mathbb{F}}}(A_0, \lambda)$, for $h(B, A_0) < \lambda/2$ and $\sigma < \lambda/2$. Let $X \in U_{\mathscr{K}_{\mathbb{F}}}(B, \sigma)$ be arbitrary. Then we have

$$
M^{n+1}_+(X) \cap U_{\mathbb{E}}(e_0, r) \neq \emptyset.
$$
\n(2.13)

In fact, by Step 2, the *n* continuous functions $e \mapsto d(X_0, e) - d(X_k, e), k = 1, ..., n$ defined on the polyhedron $Q_{e_0}^{\theta}$ satisfy (2.11) and (2.12). By the Brouwer–Miranda theorem, there is a point $\hat{e} \in Q_{e_0}^{\hat{\theta}}$ in which all of them vanish simultaneously. Thus

$$
d(X_0, \hat{e}) = d(X_k, \hat{e}), \quad k = 1, \dots, n.
$$
 (2.14)

We claim that $\hat{e} \in M^{n+1}_+(X) \cap U_{\mathbb{E}}(e_0, r)$. In fact, in view of (2.7) and of the definition of X_k and \bar{X} , we have:

$$
d(X_k, \hat{e}) \le d(X_k, e_0) + ||\hat{e} - e_0|| < ||b_k - e_0|| + 2\eta = ||b_0 - e_0|| + 2\eta, \quad k = 0, 1, ..., n,
$$

and

$$
d(\tilde{X},\hat{e})\geqslant d(\tilde{X},e_0)-\|\hat{e}-e_0\|>\|a_0-e_0\|-2\eta.
$$

As $\eta < ||a_0 - b_0||/4$, it follows that $d(X_k, \hat{e}) < d(\tilde{X}, \hat{e})$, $k = 0, 1, ..., n$. Combining the latter inequality with (2±9) and (2±14) gives

 $d(X, \hat{e}) = d(X_k, \hat{e}), \quad k = 0, 1, \dots, n.$

It follows that

$$
X_k \cap \pi_X(\hat{e}) \neq \emptyset, \quad k = 0, 1, \dots, n,
$$

whence in each of the $n+1$ balls $\tilde{U}_E(b_k, \eta)$ there is at least one point of $\pi_X(\hat{e})$. Since

these balls are pairwise disjoint, we have $\text{card } \pi_X(\hat{e}) \geq n+1$. Hence $\hat{e} \in M^{n+1}_+(X)$. Furthermore $\hat{e} \in U_{\mathbb{E}}(e_0, r)$, for $\hat{e} \in Q_{e_0}^{\theta} \subset U_{\mathbb{E}}(e_0, \eta)$ and $\eta < r$. Consequently (2.13) is verified and, under the assumption $d(A_0, e_0) > 0$, Proposition 1 is proved.

Now suppose $d(A_0, e_0) = 0$. In this case take $\tilde{A} \in \mathcal{K}_{\mathbb{E}}$ such that $d(\tilde{A}, e_0) > 0$ and $h(\tilde{A}, A_0) < \lambda/2$. Then there $\mathrm{exist}\,B\,\mathrm{\in}\,\mathscr{K}_{\mathbb{E}}$ and $\sigma > 0$, with $\overset{\circ}{U_{\mathscr{K}}}_{\mathbb{E}}(B, \sigma) \subset \overset{\circ}{U_{\mathscr{K}}}_{\mathbb{E}}(\tilde{A}, \lambda/2)$, such that each $X \in U_{\mathscr{K}_{E}}(B, \sigma)$ satisfies (2.13). As $U_{\mathscr{K}_{E}}(B, \sigma) \subset U_{\mathscr{K}_{E}}(A_0, \lambda)$, the statement of Proposition 1 is satisfied. This completes the proof.

The following proposition can be proved as in [**2**] (see Lemma 4±1).

PROPOSITION 2. Let $\mathbb E$ be a real Hilbert space with dim $\mathbb E = +\infty$. Let $A_0 \in \mathscr K_{\mathbb E}$, $e_0 \in \mathbb E$, $\lambda > 0, r > 0$ and $n \in \mathbb{N}$ be arbitrary. Then there exist $B \in \mathscr{K}_{\mathbb{E}}$ and $\sigma > 0$, with $U_{\mathscr{K}_{\mathbb{E}}}(B,\sigma) \subset \mathscr{K}_{\mathbb{E}}$ $U_{\mathscr{K}_{\varepsilon}}(A_0, \lambda)$, *such that for every* $X \in U_{\mathscr{K}_{\varepsilon}}(B, \sigma)$ *we have*

$$
M^{n+1}_+(X) \cap U_{\mathbb{E}}(e_0, r) \neq 0.
$$

Now suppose that dim $\mathbb{E} = n \geq 2$. Set $\mathcal{P}_m = \{X \in \mathcal{K}_{\mathbb{E}} \mid \operatorname{card} X = m\}$, $m \in \mathbb{N}$. For $X \in \mathcal{P}_m$, $X = \{x_1, \ldots, x_m\}$, define

$$
m(X) = \min \{ ||x_i - x_j|| \mid i, j = 1, \dots, m, \quad i \neq j \}.
$$

Given $n+1$ points $c_1, \ldots, c_{n+1} \in \mathbb{E}$, we denote by $S_{c_1 \ldots c_{n+1}}$ any sphere in \mathbb{E} containing c_1, \ldots, c_{n+1} . Observe that $S_{c_1 \ldots c_{n+1}}$ exists and is unique if and only if for some (and so for each) $r, 1 \leq r \leq n+1$, the set $\{c_k - c_r | k = 1, ..., n+1; k \neq r \}$ is linearly independent.

PROPOSITION 3. Suppose $k, n \in \mathbb{N}$ and $\dim \mathbb{E} = n \geqslant 2$. Then for every $A \in \mathcal{P}_{n+k}, A =$ ${a_1, \ldots, a_{n+k}}$, and $\epsilon > 0$, there exists $B \in \mathcal{P}_{n+k}$, $B = {b_1, \ldots, b_{n+k}}$, with $h(B, A) < \epsilon$, such *that for each set* $\{b_{i_1}, \ldots, b_{i_{n+1}}\}$ *of* $n+1$ *different points* $b_{i_r} \in B$ *the following two properties are satisfied*:

(i) there is one and only one sphere $S_{b_{i_1},...,b_{i_{n+1}}}$ containing $b_{i_1},...,b_{i_{n+1}}$;
 $S_{\alpha} = \beta P - \beta P$ (ii) $S_{b_{i_1},...,b_{i_{n+1}}} \cap B = \{b_{i_1},...,b_{i_{n+1}}\}.$

Proof. Denote by (P_k) , $k \in \mathbb{N}$, the statement of the proposition. Clearly (P_1) holds true. The proof of (P_k) , for any $k \in \mathbb{N}$, can be easily established by an induction argument.

3. *Main results*

In this section we study the cardinality of the metric projection mapping π_X for typical $X \in \mathscr{K}_{F}$.

THEOREM 1. Let \mathbb{E} be a real separable Hilbert and suppose either dim $\mathbb{E} = n \geq 2$, or $\dim \mathbb{E} = +\infty$ and $n \in \mathbb{N}$ arbitrary. Then, for a typical $X \in \mathcal{K}_{F}$, the $(n+1)^{+}$ -valued locus *of* π_X *is dense in* \mathbb{E} .

Proof. Let $E_0 \subset \mathbb{E}$ be countable and dense in \mathbb{E} . Define

$$
\hat{\mathcal{K}} = \mathcal{K}_{\mathbb{E}} \setminus \bigcup_{e \in E_0} \bigcup_{r \in Q^+} \mathcal{K}_{e,r}^{n+1},
$$

where

$$
\mathcal{K}_{e,r}^{n+1} = \{ X \in \mathcal{K}_{\mathbb{E}} | M_{+}^{n+1}(X) \cap U_{\mathbb{E}}(e,r) = \varnothing \}.
$$

The set $\hat{\mathscr{K}}$ is residual in $\mathscr{K}_{\mathbb{F}}$. In fact, if $A_0 \in \mathscr{K}_{\mathbb{F}}$ and $\lambda > 0$ are arbitrary, by virtue

of Propositions 1 and 2 (with $e_0 = e$) there exist $B \in \mathcal{K}_{\mathbb{E}}$ and $\sigma > 0$, with $U_{\mathcal{K}_{\mathbb{E}}}(B, \sigma) \subset$ *U*_{$\mathscr{L}_{\varepsilon}(A_0, \lambda)$, such that for every $X \in U_{\mathscr{K}_{\varepsilon}}(B, \sigma)$ we have $M^{n+1}_{+}(X) \cap U_{\varepsilon}(e, r) \neq \emptyset$. Thus} $\mathcal{H}_{\epsilon}^{n+1}$ is nowhere dense in \mathcal{H}_{ϵ} , and hence $\hat{\mathcal{H}}$ is residual in $\mathcal{H}_{\epsilon}^{n+1}$.

Let $X \in \hat{\mathcal{K}}$ be arbitrary. Let $u \in \mathbb{E}$ and $s > 0$ be arbitrary. Take $e \in E_0$ and $r > 0$ so that $U_{\mathbb{E}}(e,r) \subset U_{\mathbb{E}}(u,s)$. Since $X \notin \mathcal{K}_{e,r}^{n+1}$ the set $M_{+}^{n+1}(X) \cap U_{\mathbb{E}}(e,r)$ is nonempty and, *a fortiori*, $M^{n+1}_+(X) \cap U_{\mathbb{F}}(u, s)$ is so. As $u \in \mathbb{E}$ and $s > 0$ are arbitrary, it follows that $M^{n+1}_+(X)$ is dense in E. This completes the proof.

THEOREM 2. Let \mathbb{E} be a real Hilbert space with dim $\mathbb{E} = n \geq 2$. Then, for a typical $X \in \mathscr{K}_{F}$,

- (i) *the* $(n+1)$ *-valued locus of* π_X *is dense in* \mathbb{E} ;
- (ii) *the* $(n+2)^+$ *-valued locus of* π_X *is empty.*

Proof. For *r*, $p \in \mathbb{N}$ denote by $\mathcal{N}_{r,n}$ the set of all $X \in \mathcal{K}_{\mathbb{F}}$ satisfying the following two properties:

- (*q*₁) there exists $e' \in U_{\mathbb{E}}(\mathbf{0}, r)$ with card $\pi_X(e') \geq n+2$;
- (*q*₂) there exists a set $\{x_1, \ldots, x_{n+2}\}$ of $n+2$ points $x_r \in \pi_X(e')$ such that $m(\lbrace x_1, \ldots, x_{n+2} \rbrace) > 1/p.$

The set $\mathcal{N}_{r, p}$ is nowhere dense in $\mathcal{K}_{\mathbb{F}}$. To see this, given $A_0 \in \mathcal{K}_{\mathbb{F}}$ and $\lambda > 0$ arbitrary, it suffices to show that there exist $B \in \mathcal{K}_{F}$ and $\sigma > 0$ such that

$$
U_{\mathscr{K}_{E}}(B,\sigma) \subset U_{\mathscr{K}_{E}}(A_{0},\lambda) \cap (\mathscr{K}_{E} \setminus \mathscr{N}_{r,p}). \tag{3.1}
$$

Since A_0 is compact, there is an $A \in \mathcal{P}_{n+k}$, for some $k \in \mathbb{N}$, verifying $h(A, A_0) < \lambda/4$. By Proposition 3 (with $\epsilon = \lambda/4$) there exists $B \in \mathcal{P}_{n+k}$, with $h(B, A) < \lambda/4$, such that each set $\{b_{i_1}, \ldots, b_{i_{n+1}}\}$ of $n+1$ different points $b_{i_r} \in B$ satisfies properties (i) and (ii) of Proposition 3. Hence, for every $u \in \mathbb{E}$, there is a set of *q* points $b_{i_k} \in B$, with $1 \leq q \leq$ $n+1$, such that

$$
\pi_B(u) = \{b_{i_1}, \dots, b_{i_q}\}.
$$
\n(3.2)

The mapping $(u, X) \mapsto \pi_X(u)$ from $\mathbb{E} \times \mathcal{K}_{\mathbb{F}}$ to $\mathcal{K}_{\mathbb{F}}$ is upper semicontinuous, hence for each $u \in \hat{U}_E(0,r)$ there is a $\delta(u) > 0$ such that, for every $v \in U_E(u, \delta(u))$ and $X \in$ $U_{\mathscr{K}_{\mathbb{E}}}(B, \delta(u)),$ we have

$$
\pi_X(v) \subset \pi_B(u) + U_{\mathbb{E}}\left(\mathbf{0}, \frac{1}{4p}\right). \tag{3.3}
$$

As $\tilde{U}_{\mathbb{E}}(\mathbf{0}, r)$ is compact, there is a finite number of points $u_j \in \tilde{U}_{\mathbb{E}}(\mathbf{0}, r)$, $j = 1, ..., d$, such that

$$
\tilde{U}_{\mathbb{E}}(e,r) \subset \bigcup_{j=1}^{d} U_{\mathbb{E}}(u_j,\delta(u_j)).
$$
\n(3.4)

Now fix σ so that

$$
0 < \sigma < \min\left\{\delta(u_1), \dots, \delta(u_d), \frac{\lambda}{2}\right\}.
$$

We will show that, with the above choice of *B* and σ , (3.1) holds true.

It is evident that $U_{\mathscr{K}_{E}}(B, \sigma) \subset U_{E}(A_0, \lambda)$, for $h(B, A_0) < \lambda/2$ and $\sigma < \lambda/2$. It remains to verify that

$$
U_{\mathcal{K}_{E}}(B,\sigma) \subset \mathcal{K}_{E} \setminus \mathcal{N}_{r,p}.
$$
\n(3.5)

To this end, let $X \in U_{\mathcal{K}_{\mathbb{F}}}(B, \sigma)$. If $\operatorname{card} \pi_X(e') \leq n+1$ for every $e' \in U_{\mathbb{F}}(e, r)$, then (q_1) fails and hence $X \notin \mathcal{N}_{r,p}$. Now suppose that there is an $e' \in U_{\mathbb{E}}(e,r)$ for which card $\pi_X(e') \geq n+2$. In view of (3.4), let $e' \in U_{\mathbb{E}}(u_j, \delta(u_j))$, for some $j, 1 \leq j \leq d$. Clearly $X \in U_{\mathscr{K}_{\mathbb{F}}}(B, \delta(u_j))$, for $\sigma < \delta(u_j)$. By virtue of (3.2) and (3.3) (with $u = u_j$), there exists a set of *q* points $b_{i_k} \in B$, with $1 \leq q \leq n+1$, such that

$$
\pi_X(e')\subset \bigcup_{k=1}^q U_{\mathbb E}\!\!\left(b_{i_k}, \frac{1}{4p}\!\right)\!.
$$

Let $\{x_1, \ldots, x_{n+2}\}\)$ be an arbitrary set of $n+2$ points $x_i \in \pi_X(e')$. Since there are at most $n+1$ balls $U_{\mathbb{E}}(b_{i_k}, 1/4p)$, at least one of them must contain two (or more) x_i s, thus $m(\lbrace x_1,\ldots,x_{n+2}\rbrace)$ ^{*}< $1/2p$. Consequently (q_2) fails and again $X \notin \mathcal{N}_{r,p}$, completing the proof of (3.5). Hence $\mathcal{N}_{r,p}$ is nowhere dense in $\mathcal{K}_{\mathbb{F}}$.

Let us prove *(ii)*. We have

$$
\bigcap_{r \in \mathbb{N}} \bigcap_{p \in \mathbb{N}} (\mathscr{K}_{\mathbb{E}} \setminus \mathscr{N}_{r,p}) \subset \{X \in \mathscr{K}_{\mathbb{E}} | M^{n+2}_+(X) = \varnothing \}. \tag{3.6}
$$

In fact, let X be in the set on the left hand side of (3.6) . Suppose, on the contrary, that $M^{n+2}_+(X) \neq \emptyset$, and let $e' \in \mathbb{E}$ be such that card $\pi_X(e') \geq n+2$. Let $\{x_1, \ldots, x_{n+2}\}$ be a set of $n+2$ points $x_i \in \pi_X(e')$ such that $m(\{x_1, \ldots, x_{n+2}\}) > 0$. Take $r \in \mathbb{N}$ so that $e' \in \mathbb{N}$ $U_{\mathbb{E}}(\mathbf{0}, r)$. In view of (3.6), for every $p \in \mathbb{N}$ we have $X \notin \mathcal{N}_{r, p}$. Hence

$$
m(\lbrace x_1,\ldots,x_{n+2}\rbrace)\leqslant \frac{1}{p},
$$

and, as $p \in \mathbb{N}$ is arbitrary, a contradiction follows. Consequently $M^{n+2}_+(X) = \emptyset$, and (3.6) is proved. Furthermore, the set on the right hand side of (3.6) is residual in $\mathscr{K}_{\mathbb{F}}$, for the $\mathscr{N}_{r,p}$ s are nowhere dense in $\mathscr{K}_{\mathbb{F}}$. Thus (ii) is true.

The statement (i) is an immediate consequence of Theorem 1 and of statement (ii). This completes the proof.

The following theorem gives a characterization of the dimension of E by means of a typical property holding in the space of the compact subsets of E .

THEOREM 3. Let \mathbb{E} be a real separable Hilbert space with dim $\mathbb{E} \geq 2$. Then we have:

- (i) dim $\mathbb{E} = +\infty$ *if and only if for a typical* $X \in \mathscr{K}_{\mathbb{F}}$ *the* $(n+1)^+$ *-valued locus of* π_X *is dense in* \mathbb{E} *for each* $n \in \mathbb{N}$;
- (ii) dim $\mathbb{E} = n$ *if and only if, for a typical* $X \in \mathcal{K}_{\mathbb{F}}$ *, the* $(n+1)^+$ *-valued locus of* π_X *is dense in* \mathbb{E} *while the* $(n+2)^+$ *-valued locus of* π_X *is empty.*

Proof. The statement (i) follows from Theorems 1 and 2. In (ii) the necessity of the condition follows from Theorem 2, since for any typical $X \in \mathcal{K}_{F}$, $M^{n+1}(X) \subset M^{n+1}_{+}(X)$. To prove the sufficiency, put $m = \dim \mathbb{E}$ and observe that $m < +\infty$, by Theorem 1. Suppose $m > n$ (if $m < n$ the argument is similar). For any typical $X \in \mathcal{K}_{\mathbb{F}}$ we have $M^{m+1}(X) \subset M^{m+1}(X) \subset M^{m+2}(X) = \emptyset$. This and Theorem 2(i) (with *m* in the place of *n*) yield a contradiction. Hence $m = n$, and also (ii) is proved. This completes the proof.

REFERENCES

- [**1**] L. E. J. B. Beweis der Invarianz der Dimensionenzahl. *Math*. *Ann*. **70** (1911), 161–165.
- [**2**] F. S. D B. Typical compact convex sets in Hilbert spaces. *Serdica Math*. *J*., to appear.
- [3] A. L. DONTCHEV and T. ZOLEZZI. Well posed optimization problems. Lecture Notes in Mathematics **1543** (Springer-Verlag, 1993).
- [**4**] C. M. Un'osservazione su un teorema di Brouwer. *Boll*. *Un*. *Mat*. *Ital*. II (3) (1941), 5–7.
- [5] I. SINGER. Best approximation in normed linear spaces by elements of linear subspaces (Springer-Verlag, 1970).
- [**6**] I. S. *The theory of best approximation and functional analysis*. (Society for Industrial and Applied Mathematics, Philadelphia, 1974).
- [7] S. B. STECKIN. Approximation properties of sets in normed linear spaces. *Revue Roumaine*, *Math*. *Pures Appl*. **8** (1963), 5–18 (Russian).
- [**8**] T. I. Z. The nearest point mapping is single valued nearly everywhere. *Arch*. *Math*. **54** (1990), 563–566.
- [9] N. V. ZHIVKOV. Compacta with dense ambiguous loci of metric projections and antiprojections. *Proc*. *Amer*. *Math*. *Soc*. **123** (1995), 3403–3411.
- [10] N. V. ZHIVKOV. Densely two-valued metric projections in uniformly convex Banach spaces. *Set*-*Valued Analysis* **3** (1995), 195–209.