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Abstract. There is only one finite, 2-connected, linearly convex graph in the Archimedean
triangular tiling that does not have a Hamiltonian cycle.

The vertices and polygonal edges of the planar Archimedean tilings 44 and 36 of the
plane, partially shown in Figs. 1 and 2, respectively, are called thesquare tiling graph
(STG) and thetriangular tiling graph(TTG). (See [1].)

A subgraphG of TTG is linearly convexif, for every lineL which contains an edge
of TTG, the setL ∩ G is a (possibly degenerate or empty) line segment. Such a lineL
is called agrid line. Linearly convex subgraphs ofSTGare defined similarly. AT-graph
(respectively,S-graph) is any nontrivial, finite, linearly convex, 2-connected subgraph
of TTG(respectively,STG). For example, the graphG shown in Fig. 3 is linearly convex
even though it has three components including an isolated vertexv, andG has vertices
x and y whose midpointz is a vertex ofTTG but not of G. (Each component ofG
is 2-connected, and the two nontrivial components are each T-graphs.) If a nontrivial
graphG is Hamiltonian(i.e., has a Hamiltonian cycle), then it is clearly 2-connected.
Zamfirescu and Zamfirescu [5] investigated which S-graphs have a Hamiltonian cycle.
The situation is much easier for T-graphs, as we will show. With only one exception, any
T-graph is Hamiltonian.

Let D denote the T-graph shown in Fig. 4—the linearly-convex hull of the Star of
David. Even though D is 2-connected and linearly convex, it is clearly not Hamiltonian.

Theorem. Every T-graph, other than D, is Hamiltonian.

Proof. Let G be any T-graph. Theboundary of G, denoted∂G, is the boundary of the
unbounded component of the complement ofG in the plane. It is clear that∂G is a cycle
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Fig. 5

in G which surroundsG, and any vertex ofG not on∂G is called aninterior vertexof
G. A vertexa on∂G is said to be aboundary vertex of type1 (respectively, oftype2) if
the boundary ofG forms an interior angle of sizeπ/3 (respectively, of size 2π/3) ata.
If a is any boundary point ofG of type 1 or 2, letG′ = G′(a) denote the subgraph ofG
formed by removing vertexa and edges ofG adjacent toa. If a is of type 1, then either
G′(a) is a line segment andG is a triangle with a Hamiltonian cycle, or elseG′(a) is also
linearly convex and 2-connected and therefore a T-graph. However, if vertexa ∈ ∂G
is of type 2, thenG′(a) need not be a T-graph unlessa is also adjacent to an interior
vertex ofG. (For example, see vertexa in Fig. 3.) The key step in an inductive proof
will be to remove a boundary vertex of type 1 or 2, inductively assume thatG′(a) is a
T-graph with a Hamiltonian cycle (H-cycle), and extend that to an H-cycle forG. We
may assumeG has interior points, for otherwise it is clear that∂G is an H-cycle forG.
Thus the T-graphs without interior points form a basis for the inductive proof.

Case1. Assume there exists a boundary vertexa1 of G of type 1, letb1 andb2 be the
(unique) two vertices ofG adjacent toa1, and label the vertices ofG with the coordinate
system shown in Fig. 5. The boundary cycle∂G which includes the pathb1a1b2 could
not continue fromb2 towarda2 or G would not be linearly convex, nor towardb1 or else
G would fail to have an interior point or fail to be 2-connected. If∂G continued from
b2 towardc2, then any H-cycleH ′ of G′(a1) would necessarily use edgeb1b2 (sinceb2

is of type 1 inG′). Replacing edgeb1b2 by pathb1a1b2 would extendH ′ to an H-cycle
for G.

Next suppose∂G included the pathb1a1b2c3, and edgeb1b2 does not lie in any H-
cycle H ′ of G′. Then any H-cycle ofG′ would have to include the pathc3b2c2. As this
cycle leftc2 it might go directly tob1 via edgec2b1. In this case the H-cycle ofG′ could
be modified to an H-cycle ofG by replacingc3b2c2b1 by c3c2b2a1b1. Otherwise (i.e.,
edgec2b1 is not in any H-cycle ofG′), to includeb1 in H ′, another part ofH ′ would
have to include the pathb0b1c1. ThenH ′ may be modified by replacing pathb0b1c1 by
b0c1 and replacingc3b2c2 by c3b2a1b1c2, giving an H-cycle forG.

Thus (using symmetry) we may assume that any T-graph with a boundary vertexa1 of
type 1 has an H-cycle except possibly in the case when∂G contains the pathb0b1a1b2b3.
In this case, it follows from the linear convexity ofG that the grid lineL, througha1

and parallel to edgeb1b2, may meetG only at vertexa1. Hence the pathb0b1a1b2b3

in ∂G will continue along the b-level grid line to a last vertexbn (n ≥ 3) and then
drop to a c-level vertex ofG. If n = 3 and the next edge of∂G is b3c3, thenb3 is a
boundary vertex of type 1, and the same arguments may be applied withb3 in the role
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of a1. (Six repeated iterations would produce the T-graph D.) Otherwise the next edge
of ∂G is b3c4 andb3 is of type 2, or the next edge of∂G is b3b4, son ≥ 4 and we may
assumebn is a boundary vertex of type 2, by the reasoning in Case 1. If the segment
b0b1a1b2b3 · · ·bncn+1 of the boundary cycle∂G would continue fromcn+1 to cn, then
cn+1 would be of type 1 and of the form already eliminated above. It follows that as∂G
continues fromcn+1 it eventually must meet the d-level of vertices, by the 2-connected
property. A symmetric argument shows that∂G continues fromb0 and meets the d-level
of vertices. Thus linear convexity forcescn to be an interior vertex ofG. So bn is of
type 2 and adjacent to an interior vertex of G. It follows thatG′(bn)must be 2-connected
and linearly convex, and hence a T-graph, and hence we may assume thatG′(bn) has an
H-cycle H ′.

Case2. Assume there exists a boundary vertexb4 of G of type 2, letb3 andc5 be the
(unique) two vertices of∂G adjacent tob4, and label the vertices ofG with the coordinate
system shown in Fig. 6. We also assume that any boundary vertices ofG of type 1 are
of the special form described at the end of Case 1 above, and we may assume the vertex
c4 is in the interior ofG. ThusG′ = G′(b4) is a T-graph, and we assumeG′ has at least
one H-cycleH ′. If any H-cycleH ′ of G′ contains either edgeb3c4 or the edgec4c5 (say
the latter), then replacingc4c5 by the pathc4b4c5 would extendH ′ to an H-cycle for all
of G. So we assume that every H-cycleH ′ of G′ contains neither edgeb3c4 nor edge
c4c5. Then eachH ′ must (using symmetry) contain one of the pathsd4c4d5 or c3c4d5.

Case2.1. Assume someH ′ containsd4c4d5. If H ′ also contains edged5c5, then
replace the pathd4c4d5c5 in H ′ by d4d5c4b4c5 to extendH ′ to an H-cycle forG. If edge
d5c5 is not in H ′, thenH ′ must also contain the pathc6c5d6. Replace this path by edge
c6d6 and pathc4d5 by c4b4c5d5 to extendH ′ to an H-cycle forG.

Case2.2. Assume each suchH ′ containsc3c4d5. If H ′ does not contain edged5c5,
then the reasoning of Case 2.1 applies verbatim. So by symmetry we may suppose that
every H-cycleH ′ for G′ contains the pathb3c3c4d5c5.

Sincec4 is an interior vertex ofG, vertexd4 is in G and must lie in any H-cycle for
G′(b4). The cycleH ′ may not extend directly fromd4 to any of its neighborsc3, c4, or
d5, by Case 2.2. Thus either edged3d4 or edged4e5 (or both) must be part ofH ′. By
symmetry assumed4e5 ⊂ H ′. Replace it byd4d5e5 and replacec4d5c5 by c4b4c5. This
extendsH ′ to an H-cycle forG as desired.
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Case0. The above two cases were built on the assumption that there exists a vertex
of type 1 in∂G. If ∂G has no vertices of type 1 we need an independent proof of the
existence of a vertex of type 2 which has an adjacent interior vertex ofG, so that Case 2
may be applied. Vertexa in Fig. 3 shows that not every vertex of type 2 in such a T-graph
has this property. It is easy to show if∂G has no vertices of type 1, and if vertexb ∈ ∂G
is of type 2, and ifb is not adjacent to an interior vertex ofG, thenb cannot be anextreme
vertex; that is, there is no grid line throughb which supportsG. It is also easily checked
that any extreme vertex of type 2 in∂G must have an adjacent interior vertex, and by
Case 2 the proof is complete.

Remark 1. An immediate and interesting application may be obtained from the dual
formulation of the theorem. Apatch Gin the Archimedean tiling 63 of the plane by regular
hexagons is any finite subset of at least three of the hexagonal tiles. Each hexagonal tile
H ∈ G is adjacent to six other tiles, whose centers determine six main directions from
the center ofH . Suppose that for each tileH in a patchG, and for every other tile
H1 ∈ G that lies in one of the six main directions fromH , all tiles betweenH andH1

are also in the patchG. In this case we say thatG is visible in each main direction.
Using an analogy from the game of chess, we say that a patchG has aKing’s tour if all
hexagons ofG may be sequentially ordered,H1, H2, H3, . . . , Hk so that eachHi has an
edge adjacent withHi+1, i = 1, . . . , k− 1, andHk andH1 have an adjacent edge.

Corollary. With one exception, if patch G in63 is visible in each main direction, and
if each pair of hexagonal tiles in G lie in some subpatch that has a King’s tour, then G
has a King’s tour. The only exception is shown in Fig. 7.

Remark 2. Hamiltonian cycles on Archimedean graphs have been studied in various
settings. See [2] and [3] for references on counting the number of Hamiltonian cycles
on certain S-graphs, and [4] for results on the areas enclosed by thin Hamiltonian cycles
in any of the Archimedean tiling graphs. Earlier references are found in [5].

Fig. 7



502 J. R. Reay and T. Zamfirescu

Acknowledgment

The authors would like to thank Branko Gr¨unbaum, on the occasion of his 70th birthday,
for the pleasure brought by his introduction of many combinatorial problems over the
years.

References
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