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Abstract. Thereisonly onefinite, 2-connected, linearly convex graph in the Archimedean
triangular tiling that does not have a Hamiltonian cycle.

The vertices and polygonal edges of the planar Archimedean tilihgsd ¥ of the
plane, partially shown in Figs. 1 and 2, respectively, are callegd@re tiling graph
(STQ and thetriangular tiling graph(TTG). (See [1].)

A subgraphG of TTGis linearly convexf, for every line L which contains an edge
of TTG, the setL N G is a (possibly degenerate or empty) line segment. Such a.line
is called agrid line. Linearly convex subgraphs 8T Gare defined similarly. A-graph
(respectivelyS-graph) is any nontrivial, finite, linearly convex, 2-connected subgraph
of TTG(respectivelySTQ. For example, the grap® shown in Fig. 3 is linearly convex
even though it has three components including an isolated vertaxdG has vertices
x andy whose midpointz is a vertex ofTTG but not of G. (Each component o6
is 2-connected, and the two nontrivial components are each T-graphs.) If a nontrivial
graphG is Hamiltonian (i.e., has a Hamiltonian cycle), then it is clearly 2-connected.
Zamfirescu and Zamfirescu [5] investigated which S-graphs have a Hamiltonian cycle.
The situation is much easier for T-graphs, as we will show. With only one exception, any
T-graph is Hamiltonian.

Let D denote the T-graph shown in Fig. 4—the linearly-convex hull of the Star of
David. Even though D is 2-connected and linearly convex, it is clearly not Hamiltonian.

Theorem. Every T-graphother than Q) is Hamiltonian

Proof. LetG be any T-graph. Thboundary of Gdenoted G, is the boundary of the
unbounded component of the complemen&ah the plane. Itis clear thatG is a cycle
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in G which surroundss, and any vertex ofs not ondG is called arinterior vertexof
G. A vertexa on dG is said to be doundary vertex of typg (respectively, ofype?2) if
the boundary ofs forms an interior angle of size/3 (respectively, of sizes2/3) ata.

If ais any boundary point d& of type 1 or 2, lelG’ = G’(a) denote the subgraph &f
formed by removing vertea and edges o6 adjacent ta. If a is of type 1, then either
G'(a) isaline segment an@ is a triangle with a Hamiltonian cycle, or el&(a) is also
linearly convex and 2-connected and therefore a T-graph. However, if veréex G

is of type 2, thenG’(a) need not be a T-graph unleads also adjacent to an interior
vertex of G. (For example, see vertexin Fig. 3.) The key step in an inductive proof
will be to remove a boundary vertex of type 1 or 2, inductively assumeGha) is a
T-graph with a Hamiltonian cycle (H-cycle), and extend that to an H-cyclesfowe
may assume& has interior points, for otherwise it is clear ttig® is an H-cycle forG.
Thus the T-graphs without interior points form a basis for the inductive proof.

Casel. Assume there exists a boundary vergxf G of type 1, letb; andb, be the
(unique) two vertices o6 adjacent ta,, and label the vertices @& with the coordinate
system shown in Fig. 5. The boundary cy8lé which includes the path;a;b, could
not continue fronb, towarda, or G would not be linearly convex, nor towakbg or else
G would fail to have an interior point or fail to be 2-connectedd@ continued from
b, towardc;,, then any H-cycleH’ of G’(a;) would necessarily use edgeh, (sinceb,
is of type 1 inG’). Replacing edgé; b, by pathb;a;b, would extendH’ to an H-cycle
for G.

Next suppos&G included the patlin;a;boc3, and edgédo b, does not lie in any H-
cycle H’ of G'. Then any H-cycle o5’ would have to include the pathb,c,. As this
cycle leftc; it might go directly tob; via edgec;bs. In this case the H-cycle @’ could
be modified to an H-cycle o by replacingcsb,c,b; by cscobrab;. Otherwise (i.e.,
edgec;b; is not in any H-cycle ofG’), to includeb; in H’, another part oH’ would
have to include the pattyb;c;. ThenH’ may be modified by replacing paligb;c; by
boci and replacingsb,c, by csbya;bic,, giving an H-cycle forG.

Thus (using symmetry) we may assume that any T-graph with a boundary agaex
type 1 has an H-cycle except possibly in the case vdli@oontains the pathgb;a; b,ybs.
In this case, it follows from the linear convexity & that the grid lineL, througha;
and parallel to edgb;b,, may meetG only at vertexa;. Hence the pativgb;a;b,bs
in 3G will continue along the b-level grid line to a last vertbx (n > 3) and then
drop to a c-level vertex 06. If n = 3 and the next edge &fG is bscs, thenbs is a
boundary vertex of type 1, and the same arguments may be applietawittihe role



500 J. R. Reay and T. Zamfirescu

Fig. 6

of &. (Six repeated iterations would produce the T-graph D.) Otherwise the next edge
of 3G is bscs andbg is of type 2, or the next edge 65 is bsb,, son > 4 and we may
assumeby, is a boundary vertex of type 2, by the reasoning in Case 1. If the segment
bobia;bobs - - - bych 1 Of the boundary cycléG would continue front, 1 to ¢,, then

Cn+1 Would be of type 1 and of the form already eliminated above. It follows thaGas
continues front, . it eventually must meet the d-level of vertices, by the 2-connected
property. A symmetric argument shows th& continues fronby and meets the d-level

of vertices. Thus linear convexity forces to be an interior vertex o6. Sob, is of

type 2 and adjacent to an interior vertex of G. It follows tGath,) must be 2-connected
and linearly convex, and hence a T-graph, and hence we may assur@é(thathas an
H-cycleH'.

Case2. Assume there exists a boundary vettgxf G of type 2, letb; andcs be the
(unique) two vertices af G adjacent tdns, and label the vertices @ with the coordinate
system shown in Fig. 6. We also assume that any boundary vertic@obfype 1 are

of the special form described at the end of Case 1 above, and we may assume the vertex
C4 is in the interior ofG. ThusG’ = G'(by) is a T-graph, and we assur® has at least

one H-cycleH’. If any H-cycleH’ of G’ contains either eddasc, or the edge,cs (say

the latter), then replacing,cs by the pathcsbscs would extendH’ to an H-cycle for all

of G. So we assume that every H-cydi of G’ contains neither eddesc, nor edge

C4Cs. Then eactH’ must (using symmetry) contain one of the padhs,ds or czc4ds.

Case2.1. Assume someél’ containsdscsds. If H' also contains edgéscs, then
replace the patt,csdscs in H” by dsdscabscs to extendH’ to an H-cycle forG. If edge
dscs is not inH’, thenH’ must also contain the patigcsds. Replace this path by edge
CsUs and pathcyds by c4bscsds to extendH’ to an H-cycle forG.

Case2.2. Assume each sudt’ containscscsds. If H' does not contain edgkcs,
then the reasoning of Case 2.1 applies verbatim. So by symmetry we may suppose that
every H-cycleH’ for G’ contains the pathscscsdscs.

Sincec, is an interior vertex of5, vertexd, is in G and must lie in any H-cycle for
G/(by). The cycleH’ may not extend directly frord, to any of its neighborss, ¢4, or
ds, by Case 2.2. Thus either eddgd, or edgedses (or both) must be part ofi’. By
symmetry assuméses C H’. Replace it bydsdses and replace,dscs by c4bscs. This
extendsH’ to an H-cycle forG as desired.
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Case0. The above two cases were built on the assumption that there exists a vertex
of type 1inadG. If 3G has no vertices of type 1 we need an independent proof of the
existence of a vertex of type 2 which has an adjacent interior vert€x b that Case 2

may be applied. Verteain Fig. 3 shows that not every vertex of type 2 in such a T-graph
has this property. It is easy to showdis has no vertices of type 1, and if vertlx 9G

is of type 2, and ib is not adjacent to an interior vertex Gf thenb cannot be aextreme
vertex; that is, there is no grid line throuphlwhich supports. It is also easily checked

that any extreme vertex of type 2 #G must have an adjacent interior vertex, and by
Case 2 the proof is complete. O

Remark 1. An immediate and interesting application may be obtained from the dual
formulation of the theorem. patch Gin the Archimedean tiling®of the plane by regular
hexagons is any finite subset of at least three of the hexagonal tiles. Each hexagonal tile
H € G is adjacent to six other tiles, whose centers determine six main directions from
the center ofH. Suppose that for each tild in a patchG, and for every other tile

H; € G that lies in one of the six main directions frorh, all tiles betweerH andH;

are also in the patcks. In this case we say th& is visible in each main directian

Using an analogy from the game of chess, we say that a @ates aKing's tour if all
hexagons o6 may be sequentially ordereHy, H,, Hs, ..., Hi so that eaclH; has an

edge adjacent witldi,;,i =1, ...,k — 1, andHx andH; have an adjacent edge.

Corollary.  With one exceptiarif patch G in6° is visible in each main directigrand
if each pair of hexagonal tiles in G lie in some subpatch that has a King’s tioen G
has a King's tourThe only exception is shown in Fig.

Remark 2. Hamiltonian cycles on Archimedean graphs have been studied in various
settings. See [2] and [3] for references on counting the number of Hamiltonian cycles
on certain S-graphs, and [4] for results on the areas enclosed by thin Hamiltonian cycles
in any of the Archimedean tiling graphs. Earlier references are found in [5].

Fig. 7
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