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Abstract

We consider here triangulations of (2-dimensional) surfaces with all tri-

angles acute. Just providing such triangulations is sometimes surprisingly
difficult. We ask several natural questions, and start to give answers.
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1 Introduction

Triangulations are a basic geometric tool. Restricting ourselves here to 2-dimen-
sional compact surfaces, triangulations are finite sets of triangles satisfying certain
natural conditions: the intersection of any two of the triangles is either empty
or consists of a vertex or of an edge. The edges of any triangle must be shortest
paths.

Now, we raise the question of existence and minimality (least number of tri-
angles used) of acule triengulations, for various types of surfaces. This means
that the involved triangles must be acute, i.e. all their angles must be less than
rf2

For example, let us consider the surfaces of the five Platonic solids. Of course
the regular tetrahedron, octahedron and icosahedron have their natural acute
triangulations. Also in the case of the dodecahedron we can easily produce an
acute triangulation by dividing each face in the standard way into five triangles.
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But, except for the tetrahedron and for the octahedron, these trangulations are
not minimal. And what about the cube?

If the considered surface is homeomorphic to the sphere and smooth, then
every vertex of any acute triangulation must obviously have degree at least 5.
This immediately implies that any acute triangulation of such a surface contains
at least 20 triangles. Any flat torus admits an acute triangulation made up by
18 triangles. However, in some cases, 14 are enough!

All these things suggest a few questions.

2 Problems

Problem 1 Does there exist a natural number N such that every convex surface
admits an acute triangulation consisting of at most N triangles? If yes, find the
minimal such N.

This question does not seem to be easy. A solution to this problem restricted
to smooth surfaces would also be of interest.

Problem 2 What are the smallest numbers ¢ and £, such that any flat torus has
an acute triangulation with at most ¢ triangles, and any standard torus (obtained
by rotating a unit circle of centre ¢ around a coplanar, nonintersecting line at
distance o from ¢ in the Euclidean 3-space has an acute triangulation with at
most f, triangles?

Problem 3. Find the analogous numbers in the nontrivial cases of Platonic
solids, i.e. for the surface of the cube, of the dodecahedron, and of the icosahe-
dron.

Surprisingly difficult seem to us the following problems.

Problem 4 Find the analogous number in the case of all tetrahedral surfaces
{not only the regular).

Problem 5 Find the analogous number in the case of all n-gons, n being an
arbitrary fixed natural number.

Here the n-gons are 2-manifolds with boundary, parts of the plane.

3 About the platonic solids

In this paper, where we merely formulate the problems, we shall solve Problem
3 for the case of the cube, and give some partial results on other cases.

Theorem 3.1 The cube admils several acute triangulations with 24 triongles,
and ne acute triangulelion with fewer triangles.

Proof: Figure 1 shows four nonisomorphic triangulations of the cube with 24
acute triangles.
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Fig.1

Now let us prove that each acute triangulation of the cube has at least 24 triangles,

Each triangle on the mﬁmSnfambeomtainingmvemeofthe:uhe in
its interior has as sum of its angles 37/2 and therefore cannot be acute. Since
geodesics don’t pass through vertices of S, every vertex of the cube must be a
vertex of any acute triangulation.

Suppose an acute triangulation has at least 15 vertices. Each vertex which is
also a vertex of the cube has degree at least 4, because the total angle around
it is 3x/2. Each of the other at least 7 vertices has degree at least 5, the total
angle there being 27, Thus, we have at least 32 + 35 edges, counted twice. The
number of edges, counted twice, equals 3t, where £ is the number of triangles in
the triangulation, Hence ¢ is at least 24 (this number must be even),

Suppose now an acute triangulation has at most 14 vertices. Consider the
four vertices {a, b, c,d} of a face F of the cube. Clearly, some edge must start in
@ and go through the interior of F. If no vertex of the triangulation is interior
tuF,tLentheadgeendsnutsidetheinteﬁo:ufF,nndeither&mburfn:-md
no edge can start and go through the interior of F. Hence each face of the cube
contains a vertex of the triangulation in its interior. This vertex must then be
joined by an edge with each of the four vertices of the face. Indeed, suppose the
vertex v interior to some face abed is not joined with a. Let ge be the edge of the
triangulation starting at a and going through the interior of the face abed, If ae
meets be then v must be separated by ae from d in abed. Then either at ¢ or at d
appears a nonacute angle and we obtain a contradiction. Let the faces Fy, F3 have
the common edge ab. Let vy, vs be vertices of the triangulation interjor to Fy, F,
respectively. Obviously, if ab is an edge of the triangulation, then vyu; s not, if
U1vz is an edge, gb is not, but one of the two edges must be present, otherwise a
quadrilateral appears, Hence we may count again the edge, only once, by taking
4 for each vertex of the triangulation interior to some face, plus an edge for every
edge of the cube. A priori there might be other edges as well. So, the number of
edges is at least 24 + 12. This means that 3¢ 272, whence t > 24, 6]

Concerning the dodecaheder we have the following.

Conjecture There is an acute triangulation of the dodecaheder with less than 20
iriangles.
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Of course, the dodecaheder can be triangulated by taking as vertices the
centers of all its 12 faces,

Theorem 3.2 There is an acute triangulaton of the surfoce of o regular icosa-
hedron with 14 triangles.

Proof: Figure 2 describes the surface § of a regular icosahedron (on the left
band side the upper half of 10 equilateral triangles, on the right hand side the
lower half of 10 equilateral triangles).

Consider the face F of the right hand side of Figure 2, which has a vertex at o
and a common edge with the central triangle T of the figure. On the kine segment
from the centre f, of F to a take a point r; at small distance ¢ from f,. Then,
the point r; is obtained by rotating r; around the centre of T' counterclockwise.
This rotation must be small compared with £, The points f;, ooy, re,rr and vy
are obtained analogously. The vertices of our triangulation will be py, ps, ps with
degree 4 and 91,42, 09,14, ra.73 with degree 5. The 91 edges of the triangulation
are shown dark in Figure 2.

Let us examine the angles around p;. The adjacent vertices HTE Gy, G4, Ty, T5.
Clearly, £ qip1gn = 2. Since £ gipyf, = %, we have £ gypir. < £, and so
£ qmry < 7 too. Similarly, £ gupyrs < % The angle ryp;rs is acute because s
close to £ fapi fi = 2%,

Next we examine the angles around 1. The adjacent vertices are 1. P3.02, 03, Ty,
Of course, £ pigigs = £ gogigs = £ @GPy = §. Also, £ rigips < . We
havesd rig1py < £ too, because £ fipa < £ roqa < 2

Finally, let us examine the angles around r;. The adjacent vertices are
T2173,: 0341, P1. Clearly, £ roryrs = 5- The angle pyryry is acute because it
15 close to £ pyrer. < £ psf.f. = - Similatly, £ piriry < £, From f, to ¢
there are two geodesic segments, ore of which meets the edge ap; in ', say. The
angle paryq; is cloge to £ Pafar’ < £ pafia = 7. hence acute. Since i f. cuts
orthogonally the side of F which contains o but not ', we have £ nfar' < £,
The angle pyr1g; being close to P1far’, is also acute.

We investigated all essentially different cases, and thus finished the proof that
the considered triangulation is acute. ]
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4 About polygons

Impc:rtant and elementary surfaces with boundary which can be considered are
planar convex sets. We start with the family of all triangles.

Theorem 4.1 Every triangle is triangulable with of most 7 acute frigngles, and
this bound is best possible.

Proof: Let n be the smallest number of triangles in an acute triangulation of
some nonacute triangle. Let abe be a triangle with the angle at a at least w/2,
realizing the above number n of triangles in an acute triangulation. Some edge ad
must meet the interior of the triangle. If d € be, then at least one of the triangles
abd and aed is not acute. The triangulation of abc determines a triangulation
for the abave nonacute triangle, which must have itself at least n triangles. This
contradiction shows that d is interior to abe.

If d is joined with both b and ¢, the obtuse triangle dbc appears, and we get
a contradiction as before.

We consider now the case that d is joined with b. We count the edges of the
triangulation. The vertex ¢ has degree at least 2, the vertices a and b have degree
at least 3, d has degree at least 5, and the other 3 neighbours of d have degree
at least 4. So, we obtain together at least 25 edges, counted twice. Hence there
are at least 13 edges. Counting the edges from the number n of triangles, those
edges which lie on the boundary of the triangle will be counted once, the other
edges twice. So, 3n plus the number of boundary edges equals at least 26, At
most one triangle (that containing ¢) has two boundary edges. So, there are at
most 1+ 1 boundary edges. Hence n+1 2 26 — 3n, from which it follows that
n > 6

The case when d is joined with ¢ is analogous.

Finally we consider the case that d is neither joined with b, nor with ¢. The
vertices b and ¢ have degree at least 2, a has degree at least J, d has degree at
least 5, and the other at least 4 neighbours of d have degree at least 4. Summing
up, we get at least 26 edges, counted twice. Counting, as before, the edges from
the pumber of triangles, and observing that at most two triangles can have two
boundary edges each, we get the inequality n +2 > 28 — 3n, from which follows
again n > 6.

We construct now an acute triangulation for an arbitrary triangle abe with
the angle at a at least #/2. We consider first the centre i of the circle inscribed
to abe, then take the points ¢ € ab, a’,a" € bc, and V' € co such that all the
angles ¢/ib, a’ib, a'"ic, b'ic be equal and a little less than /4. The line-segments
ia, ib', ic’, ia', ia", £'d’, and b'a" become edges of the triangulation, which has 7
triangles; we show that it is acute.

Let a, 3,7 be the angles of abe at a, b, ¢ respectively.

Clearly, the isosceles triangles ic'a’, ib'a”, be'a’, cb'a” are acute.

The angle bic equals 7 = (§+7)/2 = (7 +a)/2. Thus, the angle a'ia" is slightly
larger than /2. Hence it can be arranged to be acute, The angle c’a’b equals
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(x — )/2, so the angle ia'a" is slightly less than 7 — (w — B8)/2 — (v/4) = (8/2) +
(x/4) < =/2. The same can be done with the angle ia"a' whence the triangle
aib’ are acute.

Clearly, a/2 < /2. The angle ac'i equals the angle ia’a", which we showed to
equal (8/2)+(r/4). The angle aic’ equals x— (a+8)/2— (7/4) = (v/2) +(7/4) <
/2. Hence the triangle aic’ and, analogously, the triangle aid’ is acute.

So, all 7 triangles are acute. O

Theorem 4.2 Each rectangle is triangulable unth 8 acute triangles, and this is
the best possible estimate.

Proof: Let abed be a rectangle admitting an acute triangulation with n triangles.
Obviously, some vertex v of any acute triangulation of abed must be interior to
the rectangle.

If there is no further interiar vertex, then there must be some vertices on
the edges of the rectangle, because the degree of v is at least 5. Clearly, v is
joined with all vertices a,b,c,d. Thus, for every further vertex, there is just
one edge going through the interior of the rectangle, whence its degree is 3, and
one of the two angles is nonacute. This contradiction shows that there must be
further vertices interior to the rectangle. Let p be the number of vertices of the
triangulation. Thus, p > 6. By Euler’s formula, the number of edges equals
n+p—1.

Let i be the number of vertices interior to abed. Then there are precisely p—1
boundary vertices, and equally many boundary edges.

Suppose i = 2. Then there are at least 9 edges interior to the rectangle plus
p— 2 boundary edges. Hence

9+p—-2<n+p-1

and n = 8.
Suppose now i = 3. Each of these 3 interior vertices has degree at least
5. Summing up, we get 15 edges, among which at most 3 have been counted
twice. So there are in fact at least 12 interior edges. And there are exactly p—3
boundary edges. Hence
124+p—3<n+p=-1

and n 2 10,

Finally, suppose i > 4. We have at least four vertices of degree at least 5, and
four vertices of degree at least 3. So, the number of edges counted twice is at
least 32. Since no triangle can have more than one boundary edge, the number
of boundary edges is at most n. Hence at most 3n + n is the number of edges,
counted twice, It follows that 4n > 32, and therefore n > B.

Now we present for an arbitrary rectangle abed an acute triangulation with &
triangles.
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Let p be the midpoint of ab and ¢ the midpoint of cd. We take two points T8
inside abed, close to g and symmetric with respect to pq, such that dr, dg, ¢q, cs
are equally long. The line segments dr, cs, rq, 8q, r4, ar, bs, pr and ps determine

a triangulation, which is obviously acute.
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