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INTERSECTING LONGEST PATHS OR CYCLES:
A SHORT SURVEY

Tudor Zamfirescu

We talk here only about connected finite graphs without loops and multiple edges.
If such a graph is hamiltonian then each longest cycle visits all vertices, so their
intersection too contains all vertices. But not all graphs are hamiltonian. For the
well-known Petersen graph, each vertex is missed by some longest cycle (in fact it is
even hypohamiltonian, which means that the graph itself is not hamiltonian, but the
graph minus any of its vertices results in a hamiltonian graph); thus that intersection
is empry!

In 1966 Gallai raised the question whether such an example also exists for paths
instead of cycles [2]. And indeed, short after, H. Walther found an appropriate exam-
ple (with 25 vertices) [14]. Hence there is no qualitative difference between the case
of cycles and that of paths.

Subsequently the question was refined. Can we ask that any set of k vertices be
missed by some longest path (or cycle), for a fixed £ > 1? Can we ask the graphs to
have higher connectivity and still enjoy the above property? Can we impose planarity”

I raised these questions in 1972 [16] and asked explicitly for examples of minimal
order. In the following years partial answers appeared. Also, the provided examples
were gradually improved.

The P1 problem, i.e. Gallai’s original problem about the existence of a graph in
which every vertex is missed by some longest path, got a better answer through an
example with 12 vertices only (independently found by Walther and Zamfirescu, see
(15], [4], [19]). See Figure 1.

The P17 problem, i.e. the one above restricted to planar graphs, generated several
examples, each smaller than the previous one. Walther's first example with 25 vertices
was planar, but the smallest so far was found by Schmitz in 1975 and has 17 vertices
(see [10]). See Figure 2.

It was conjectured in [17] that 12 and 17 are smallest possible in the problems P1
and P1P respectively.

The examples are naturally larger if higher connectivity is requested. The first
2-connected example constructed in 1972 for P1 had 82 vertices and was planar (16].
Today, the smallest known 2-connected graphs answering P1 and P1” have 26 and 32
vertices, respectively [19]. See Figures 3 and 4. The same problem for 3-connected
graphs received its first answer in 1974 through Griinbaum'’s example with 484 vertices
[4]. But the best answers so far are in [19] and [5], the respective graphs having 36
and 224 vertices. See the first of them in Figure 5.

The Ck problem, i.e. the existence of graphs in which any k vertices are missed
by some longest cycle, was completely solved, in the sense that the provided example
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has the smallest possible number of vertices (namely 3k + 3), by Thomassen [11].
See Figure 6. However it can be said that the appropriate frame while working
with longest cycles demands connectivity at least 2, and in that case the best known
example for the C1 problem remains, as for connectivity 3, Petersen’s graph.

The solution to Ck also works for Ck?. Not so for higher connectivity. For the
C1 problem and 2-connected planar graphs, Thomassen found an example with 15
vertices (see [19]). See Figure 7. For 3-connected planar graphs, the first exhibited
example belonged to Griinbaum [4] and had 124 vertices. The smallest example known
so far is Hatzel’s hypohamiltonian planar graph (with 57 vertices) found in 1979 [5].
See Figure 8. ; - cu ¢ ST j

“The C2 problem, received — for 2-connected graphs - a positive answer as well.
The idea was to insert an "open” copy of a graph G responding to C1 at every vertex
of a second graph H of that type. This means to delete one 3-valent’ vertex of G
and replace each vertex of the graph H, which must be cubic, with the rest of G.
Thereafter sometimes the edges of X can be contracted. So, a good answer to C2
is the 3-connected graph with 75 vertices obtained by taking both G and H to be
Petersen’s graph [19]. See Figure 9. Without the contractions mentioned above; the
graph has 90 vertices. This was the chronologically first 3-connected example, found
in 1974 by Griinbaum [4]. The first 2-connected example had been presented already
in 1970 by Walther [14] and had 220 vertices. Concerning planar 2-connected graphs,
an example constructed in [17) is the smallest known. It has 135 vertices. See Figure
10. If the graph should even be 3—com_1écted, the first example, with 14818 vertices,
appeared in 1976 [19]. The best example was found by Hatzel [5] in 1979 .and has
6758 vertices; it uses Hatzél’s hypohamiltonian graph and a previously' constructed
cubic 3-connected graph due to Griinbaum [4], which had answered C1. _

“The development for the P2 problem was analogous. The most used ideas were
to insert an "opened” graph answering Clina graph answering P1, or to‘insert an
"opened” graph answering C2 in Ky. So, the first example for P2 was obtained by
Griinbaum in 1074 [4]. It was 3-connected and had 324 vertices. Now,-the smallest
such examples are a 3-connected graph with 270 vertices [19], a 2-connected planar
graph with 914 vertices (18], and a 3-connected planar graph with 26378 vertices
obtained by Hatzel in 1979 from his corresponding example for C2 [5].

‘For further historical notes, see [17]. For another rather complete account on these
results, see Voss’ book [13]. ) s

The following interesting questions remained unanswered.

Question 1. Do there exist 4-connected graphs with empty intersection of their
longest paths (or cycles)? -

Quesﬁon 2. Do there exist graphs such ﬂ:}i;.t any 3 \-rertices are missed by some
longest path (or cycle)? - e wavieS 1D
“* We may, of course, intersect fewer longest paths than all of them. It is an easy
exercise to see that any two longest paths must intersect. Similarly, if 2-connectedness
is assumed — and we shall always make this assumption when talking about cycles
— any two longest cycles have at least 2 common points. But we already ignore the
situation at the next step.
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Question 3. Do any 3 longest paths (or cycles) have non-empty intersection?

This being unknown, we introduced numbers p and ¢ meaning the smallest integers
such that any p longest paths of any graph intersect, and any c longest cycles of any
2-connected graph intersect. Examples of Schmitz (see [10] and [13]), Jendrol and
Skupied [6] show that 2 < p < 6 and 2 < ¢ < 6, respectively. See Figures 2 and 11.

Question 4. Do any 6 longest paths (or cycles) have non-empty intersection?

We know that two longest paths, and two longest cycles as well, meet. But, in
how many points? It depends on the connectivity of the graph. It is immediately
seen that k-connectivity implies that there are at least k points in that intersection,
for k = 2 or 3. Also the case k = 4 is easy. The following question was raised by
Smith, who conjectured an affirmative answer.

Question 5. Do any two longest cycles in a k-connected graph have at least k
common points (for k& > 2)7

Work of Grétschel [3] shows this to be true for & < 6. However, in general, we
only know that there must be Q(vk) common points 1.

Concerning the C1 problem, we may also ask: Since all most usual families of
graphs containing nonhamiltonian members also contain graphs answering C1'in the
affirmative, are there any interesting families at all, which have no such graphs?

Work of Menke [7], and Menke, Zamfirescu and Zamfirescu [8] provides and in-
vestigates such a family. It contains certain subgraphs of the infinite lattice graph L
with vertices at Z2. More precisely, the family contains graphs of the following type.
Take a (finite) cycle C' in L. The graph whose vertices and edges are on or inside C
is called a grid graph. The family of all grid graphs has no example satisfying C1.
Concretely, each such graph has at least 4 points lying on each longest cycle. This
was established by Menke in 2000 [7].

The family F of graphs constructed analogously, but starting from the equilaterally
triangular lattice, was not yet investigated from this point of view. For a certain
subfamily of it, we know that all its graphs but one are hamiltonian [9]. This may be
useful in a future investigation of F. :
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