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ON THE LENGTH OF THE CUT LOCUS ON
SURFACES

JIN-ICHI ITOH* aAnD TUDOR ZAMFIRESCU

Abstract. Let S be a 2-dimensional torus or projective plane of intrinsic
diameter 1. We prove that there always exists a point p € S the cut locus of
which has length at least 2, and make further observations.

MSC 2000: 53C22, 53C20.

Let S be a 2-dimensional compact surface with smooth Riemannian metric, with-
out boundary, of intrinsic diameter 1. Take some point p € S. A point ¢ € S is
called critical with respect to the intrinsic distance p, from p if for every tangent
direction v at ¢ there is a segment, i.e. a shortest path, from p to ¢ whose tangent
direction at ¢ makes with v an angle not larger than /2.

For each unit tangent vector v at p, we denote the geodesic from p with initial
direction v by v,. We call the last point ¢ of -y, up to which the length of the
geodesic arc pg equals pp(q) a cut point along 7,. The set of all cut points along
geodesics from p is called cut locus of p and is denoted by C(p). The topology
of S is entirely encoded in the cut locus C(p) (see [5]), and the local structure of
C(p) is that of a tree (see [6]). For any point ¢ in C(p) which is not an endpoint
(a point of degree 1 in the local tree), there are at least two segments from p to gq.
We define a subset C°?(p) of C(p) by taking all points g € C(p) joined with p by
at least two segments forming a non-null-homotopic curve, and call it the cyclic
part of the cut locus. Note that the cyclic part of the cut locus includes the union
C*(p) of all its cycles, and there is a deformation retract from S\ {p} to C(p) and
moreover to C°P(p). It is easily seen that the cyclic part of the cut locus is always
connected, while the union of all its cycles may be disconnected. The union of all
Jordan arcs joining critical points of p, was called by the first author essential cut
locus [2], [4]; we denote it by C**(p). Let AA denote the 1-dimensional Hausdorff
measure (length) of the set A. It is known that any Jordan arc J between points
in C(p) is rectifiable, i.e. AJ is finite (see [3], [6]). Since every cycle contains some
critical point, AC?(p) < AC®*(p). Put

A(S) = sup A\C* (p).
pES
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On the standard sphere, each cut locus has length 0. However, this is impossible
for surfaces of higher genus, or non-orientable. More precisely, we treat here the
following problem.

Problem. Do there exist any positive constants cy,cs, depending only on the
topology of S, such that

1) there is a point p € S with A\CP(p) > ¢,

2) there is a point p € S with A\CP(p) < ¢; ?

The two parts of the Problem will receive two different answers.

Theorem 1. For any compact surface S of diameter 1 not homeomorphic to the
sphere, there is a point p € S such that the length of CP(p) 1is at least 1.

Proof. Let 2,y be a pair of points in S at distance 1. The intersection of C'°? (z)
and C?(y) is not empty. Indeed, if it were, then the complement of C(z) in S,
which is homeomorphic to an open disk, would include C¢? (y), which could then
impossibly have an open disc as complement because it contains a cycle.

Take a point p in the above intersection. Then z belongs to C°?(p), because
there are two segments from z to p whose union is not null homotopic. The same
is true about y, and there exists an arc in C°?(p) between z and y, of length at
least 1.

Corollary. If the compact surface S has diameter 1 and A(S) < 1, then S is
homeomorphic to the sphere.

We can improve this lower bound in case S is homeomorphic to the projective
plane or to the torus. The new bounds are best possible.

Theorem 2. If the compact surface S of diameter 1 is homeomorphic to the
projective plane, then there is a point p € S such that the length of C(p) is at
least 2.

Proof. Let z,y,p € S be chosen as in the preceding proof; hence z and y belong
to C°?(p).

For S homeomorphic to the projective plane, C?(q) is a single cycle. Then each
of the two arcs determined by z,y on C°P(p) has length at least 1, so ACP(p) > 2.

In the case of the canonical projective plane of diameter /2, every cut locus
is a cycle of length 7.

Theorem 3. If the compact surface S of diameter 1 is homeomorphic to the torus,
then there is a point p € S such that the length of CP(p) is greater than 2.

Proof. Take z,y,p as before. For S homeomorphic to the torus we have
C(g) = C*(q) for all ¢ € S. Hence z,y € C*(p). Now, C*(p) is a union of two
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cycles meeting at a point z. If z, y belong to the same cycle C C C°P(p), then each
of the two arcs determined on C has length at least 1, so A\C > 2 and AC?(p) > 2.
If z,y do not belong to the same cycle of C°P(p), then let J; be a Jordan arc
in C°?(p) joining z to z, and J;,Js the two Jordan arcs in C°P(p) joining z to
y. Then J; U J2 and J; U J3 cannot be both segments because segments do not
bifurcate. So, the sum of their lengths is larger than 2.

The following example shows that the bound given by Theorem 3 is best pos-
sible.

Example 1. Consider a thin torus embedded in R3. On the zz-plane take a small
circle (z — 1)% + 22 = €2, and rotate it around the z-axis. When ¢ tends to 0, the
diameter of this torus tends to 7 and the length of the cyclic part of any cut locus
tends to 2.

From Theorem 3 it follows that A(S) > 2 for all tori S. The following example
settles part 2) of the Problem in the negative for orientable surfaces of genus 1.

Example 2. Consider a torus as described below. (See Figure 1.) On the zy-
plane take the square Q = [0,1] x [0, 1]. Identify (z,0) with (z,1) and (0,y) with
(1,y) for all z,y € [0,1] to obtain a flat torus F. The diagonals D;,D; of Q
are cycles in F' and determine two squares in F. Consider the union L€ of the
2n lines y = i/4n (i = 2,4,6,...,4n), and the union L° of the 2n lines y = i/4n
(:=1,3,5,....,4n — 1). Let U be the set of all points in @ at distance less than
1/4n from D; U Dy. Then each of the sets M¢ = QN L and M°=QNL°\U is
a closed union of horizontal line segments.

Figure 1.

The continuous function f : F' — [0, 1] defined by
f(p) = ma.x{O, L 4Tld(p, Mo)}y
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where d(p, M°) denotes the distance from p € F' to M?, satisfies f(M°UD1UD;) =
0 and f(M°) = 1. Then the graph of f (with the pertinent identifications), which
has diameter less than (3 4+ v/2)/2, can be approximated by a C* Riemannian
surface with the same bound on the diameter and with arbitrarily long C?(p) for
any p, if n is taken large enough.

For surfaces with higher genus, the following example suggests that a larger
lower bound for A(S) might be correct.

Example 3. Let us consider the thin long surface with genus g and diameter 1
obtained by taking the e-neighbourhood of the 1-dimensional complex shown in
Figure 2, with small ¢, and approximating it with a Riemannian surface. In this
case, for any point p, the length of C°P(p) is about 4 — % or less.

Figure 2.

We have the folowing conjecture.

Conjecture. On any oriented surface of genus g > 2 and diameter 1, there is a
point p such that A\C?(p) > 4 — -Z-.

Now we shall present a lower bound for A(S) in the convex case.

On any compact convex surface S in IR?, without any differentiability assump-
tion, let M,, respectively Fy, be the set of all relative, respectively absolute,
maxima of the distance function p, from z.

The second author introduced in [9] the set S of all compact convex surfaces
S admitting a point z for which the set M; is disconnected. Contrary to the
Riemannian case, for arbitrary compact convex surfaces S, A(S) can be infinite.

Theorem 4. On the surface S € Sa, consider a point  with disconnected M, and
the Jordan arc J C C(z) joining the points y and y' chosen in different components
of M,. Let my = infyej pz(u). Then

AS) 2 /e w)? — % +/pay)? — m3.

Proof. Let z € J satisfy p;(2) = my. By Lemma 5 in [9], there are precisely
two segments from z to z, and these form a closed geodesic arc I at z. (This is
well-known in the Riemannian case; see [8] for an extension to Alexandrov spaces.)
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Let y*, y'* be the points of I' closest to y, respectively y'. Of course, p(y*) <
pz(z). By Alexandrov’s Satz 1 in [1], p- 129, pz(y) is smaller than or equal to the
length of the hypotenuse of the plane right triangle the other sides of which have
lengths p,(y*) and p;(y*). Hence

pa(y)? < py(y™)? + pa(2)?

py(y") > \/pa(y)? —m3.
py (") 2 1/ p=(y')? —m3.

A(S) = XC®(z) 2 AT 2 py(y”) + oy (¥'")

and
Analogously,

This together with

yields the theorem.

C. Vilcu [7] proved that S is precisely the set of all compact convex surfaces
S admitting a point z for which the set F; is disconnected. Let r(z) be the radius
of S in z, i.e. the maximal value of p;.

Theorem 5. Suppose S is a convez surface in Sy and I’ is a closed geodesic arc
at © separating two components of Fr. Then

A(S) > /4r(z)? — A2,

Although the arc T is not defined in the same way, the proof works like for
the preceding theorem, with the observation that both pz(y*) and pz (y"™*) are not
larger than AT'/2.
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