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ACUTE TRIANGULATIONS OF TRIANGLES
ON THE SPHERE

JIN-ICHI ITOH* AND TUDOR ZAMFIRESCU

Abstract. We prove that each spherical geodesic triangle with angles
smaller than 7 is triangulable with at most 10 acute triangles, and this
is the best possible estimate.
MSC 2000: 52A15, 53A05.

The investigation of acute triangulations has one of its origins in a problem
of Stover reported by Gardner in 1960 in his Mathematical Games section of the
Scientific American (see [4], [5], [6]). There the question was raised, whether a
triangle with one obtuse angle can be cut into smaller triangles, all of them acute.
Another, even earlier, interest in acute triangulations stems from the discretization
of partial differential equations [8].

In 1980, Cassidy and Lord considered acute triangulations for the surface of a
square. Maehara recently investigated acute triangulations of quadrilaterals [10]
and other polygons, obtaining deeper results.

Acute triangulations with triangles which are close to equilateral were consid-
ered by Gerver [6] and, on Riemannian surfaces, by Colin de Verdi¢re and Marin
[2].

We are interested only in triangulations all the members of which are geodesic
triangles, i.e. all edges must be shortest paths. This is motivated by the geometric
significance of the geodesic triangulations, i.e. those triangulations using geodesic
triangles only. Colin de Verdiére [1] shows how to change a triangulation of a
compact surface of nonpositive curvature into a geodesic triangulation. The planar
case was previously treated by Fary [3] and Tutte [12]. From now on triangulation
will always mean a geodesic one. We focus on triangulations which are acute,
which means that the angles of all appearing geodesic triangles are smaller than
/2.

W. Manheimer [11] solved Stover’s problem: every non-acute triangle can be
triangulated with 7 acute triangles. About fourty years later, H. Maehara [9]
showed that each quadrilateral can be triangulated with at most 10 acute triangles.
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Recently, T. Hangan and the authors [7] raised the following problem.

Problem. Does there exist a number N such that every closed convex surface
admits a triangulation with at most N acute triangles?

Of course, the same question can be raised for other interesting classes of
surfaces, with or without boundary (see [7]). Also, we may well think of higher
dimensional generalizations.

Here we consider acute triangulations of spherical triangles. We shall see that
the corresponding number is somewhat bigger than in the plane.

Let a, b, ¢ be points on the 2-dimensional Euclidean sphere S%. In this paper, a
triangle means an open set O the boundary of which is the union of three shortest
paths with all angles (towards O) at most . If all angles are less than =, the
triangle will be called proper. Notice that all sides of a proper triangle are less
than 7.

Let |zy| denote the length of the shortest path zy C S?, and (zy) = zy\ {z,y}

Theorem 1. Each proper triangle is triangulable with at most 10 acute triangles,
 and this is the best possible estimate.

Proof. We start with the following claim.
If there are some points p € abe, a' € (be), b’ € (ca), ¢’ € (ab), such that

Lpa'b= Ipb'c= Lpca=m/2,
the angles apb, bpc, cpa are obtuse, and
|a'd], |a'c], [t'c|, [b'al, |'al, |c'B], [pa’l, |pb] |pc']

are all less than 7 /2, then there is a triangulation of abc with 10 acute triangles.

To prove this claim, we make use of Maehara’s pivot technique, introduced in
[10] for planar triangulations. Consider a small circle of centre p and the circum-
scribed triangle a”b"c"” such that a”b"” is orthogonal to pc, b"c” to pa’ and c"a"
to pb’. If the radius ¢ of the circle is small enough, then the triangle a"b"c” is
acute. We get in this way 10 acute triangles:

a”b”c”, abla”, aclall’ bc’b", ba’b”, calcll7 cb’c”, a”blc”, b”c’a”, C"a'b".

Indeed, Zpa’c = 7/2, |pa’| < w/2 and |a'c| < 7/2 imply Zcpa' < 7/2 and Zpea’ <
m/2. Hence Zcc'a' < m/2 too, if € is small enough.

Next, we classify the spherical triangles into the following three types.

(i) At most one edge length is larger than 7/2 and precisely one angle is
obtuse or right.

(ii) No angle is obtuse, or all 3 edge lengths are larger than /2, or precisely
2 edges have lengths larger than /2 and both opposite angles are obtuse or right.
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(iii) Precisely two edges have lengths larger than m/2 and one of the opposite
angles is acute.

It is immediately seen that Cases (i), (ii), (iii) cover all possibilities. Now, we
provide for each of them an acute triangulation.

In Case (i), we can use the acute triangulation provided for planar triangles in
(7]

Let the longest side be ab. Then the angles at a and b are not obtuse. Take
the inscribed circle C of centre i. Also, let a',b' € ab, ¢ € be, ¢’ € ca be such

that |aa’| = |ac|, [bb| = |bc”|, and c'a’,b'c" are tangent to C. Let i, € be, iy € ca,
ic € ab be tangency points of C. We get the acute triangles

aa'd by’ ia'c ,ib'c" icc  icc”, ia't'.

Indeed, most involved angles are obviously acute. Less obvious are the following
angles: a'ic', cic/, a'ib’ (and analogous ones).

Since |aiy| < 7/2 implies Zaiiy < 7/2, we get La'ic' = Laiiy < 7/2.

Next, |ac’| = |aa’| and |ac| < |ab| imply Za*iia < m, where {a*} = C'Na'c'.
Thus, Leid = La*ii[2 < 7)2.

Finally, 4/a'ib' = 2w — Li,iiy, whence Za'ib' < m/2.

In Case (ii), for all possible situations, we can use the claim at the beginning of
the proof, the role of the point p being played by the centre of the circumscribed
circle of abc. This can be easily checked.

In Case (iii), let |ab| > 7/2, lac| > 7/2 and Zabc < 7/2.

We first observe that in this case Zbac < /2.

Choose b € ab, a3 € bsc and a’,a" € aaz such that |abs| = |ac], |azbs| = |asc|,
|aa’| = 7/2 and the triangle a"bsc is equilateral.

Define

i { a" ifa" €ad
a2

a' . otherwise.

Clearly, azbsc is an acute triangle.

Choose now b; € abs and ¢; € ac with |ab;| = |aci| small. Then choose
by € abs, ¢z € ac and a; € aay, such that Zasbobs and Zaga by are slightly smaller
than 7/2 and |abs| = |acz|. Then all 10 triangles

abicy,a1bicy, a1bibe, ajcica, a1a2bs, a102C3, azbabs, azcac, azbsc, bbsc
are acute.

In order to show that 10 is the best possible estimate, we prove that in one
particular case at least 10 triangles are needed.

Assume that all side lengths of the triangle abc are larger than 7/2. We prove
that in this case we cannot triangulate with fewer than 10 acute triangles.

Let 7 be a triangulation of abc with n points, ¢ triangles and I edges. Each
edge of abc must contain a further point: @' € be, b' € ca, ¢’ € ab. At least two
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interior edges of 7 must start at a’, say a'p,a'q. At least one interior edge starts
at b.

If p = ¢/, then a triangle inside a'be’ has a'c' as a side, and must therefore be
obtuse; we got a contradiction. An analogous contradiction is obtained if p = b'.

Similarly, if p = a, then a triangle inside aba' has aa' as a side and must be
obtuse, again a contradiction is obtained.

Hence p and g are distinct interior points.

Analogously, there are two edges starting at each of the points ¥, ¢/, and ending
in the interior of abc.

Suppose p, ¢ are the only interior points obtained as the other endpoints of the
interior edges emanating from a',¥', ¢. As a',b',c can obviously be joined with
some point r € S? outside of abc by three arcs having only the point r in common,
this would imply that a graph isomorphic to K33 with vertices a,b,¢,p,q,T can
be embedded in S2. This is impossible, by the well-known theorem of Kuratowski,
so there must be at least three interior points, whence n > 9.

Since the degree at a, b, c must be at least 3, the degree at a’,b',c’ at least 4,
and at the interior points at least 5, we have

29>3-3+3-44+(n—6)-5=5n-9.
" This together with Euler’s formula gives
2%=21—-2n+2>3n—"T1.
Taking into account that n > 9, we get ¢ > 10.

There also exist non-proper triangles on S2. For the reader’s convenience we
shall treat here one non-proper case, but leave him the pleasure to do the rest.

Theorem 2. Any non-proper triangle with all side lengths smaller than m is
triangulable with 18 acute triangles, and this estimate is best possible.

Proof. Such a triangle abc must be a hemisphere. Let p be its centre and C' a
small circle about p. Consider the midpoint a' of be and the other two analogous
points. The edges pa, pa’, and the other 4 analogous ones meet C in 6 points.
The great circles tangent there to C' determine a hexagon. Its sides and the
corresponding midpoints of the side of abc determine 6 narrow triangles. Between
a'b and two of the preceding narrow triangles there is a further triangle, and there
are another 5 of this kind. Finally, p and the sides of the hexagon determine the
remaining 6 triangles of the triangulation. It is easily checked that all triangles
are acute.

We prove now that no acute triangulation of abe has less than 18 triangles if all
side lengths are at least m/2. First, observe that no triangle of the triangulation
with ab as a side would be acute, so there must be some vertex in (ab), and
similarly in (bc) and in (ca). All these 6 points must have degree 4. One edge
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ending in a and one ending in the neighbouring vertex ¢’ of (ab) have a common
endpoint a” inside of pac’. Since there are at least 6 disjoint triangles like pac’,
we have at least 6 vertices like a” (including a”).

Suppose there are at least 7 of (each of) them. Then, with the already used
notation, at least 7 points have degree at least 4 and the remaining n — 7 degree

at least 5, whence
20>7-44+(n—-T7)-5=5n—-"1.

By Euler’s formula,
2t=20—-2n+2 > 3n—5.

Since n > 14, this implies ¢ > 19.

Suppose now that there are precisely 6 points like a”, and no further points
inside abc. Of course, there are also another 6 points, namely a, b, c and the three
on the sides. These form a plane 12-cycle I'. Since o and the other 5 analogous
points have degree at least 5, there should be at least 3 diagonals starting at every
second point of I' and coexisting without crossing in the interior of I'.

The cycle I' and all edges enclosed by I" form a planar graph with 12 points,
I' > 12+ 9 edges, and t' triangular faces enclosed by I'. Clearly, 3t' = 2I' — 12,

whence
36-3I'+3t'=3-1'-12<3.
By Euler’s formula, we must have here equality, which means that the edges of
the graph are precisely the edges of I" plus 9 diagonals joining all pairs of points
analogous to a” including a” itself. Delete now from this graph the points of degree
2 (i.e. a,b,c and the three points on the sides of abc). We obtain another planar
graph with 6 points only, which is a triangulation of the hexagon, with degree 3
at every vertex of the hexagon and without further points. But this is obviously
impossible.
Hence n > 13. Now,

20>6-4+(n—6)-5="5n—6,

whence
2t =21 -2n+2>3n—4> 35

and t > 18.

Remark. On surfaces of constant negative curvature, any geodesic triangle
admits an acute triangulation with at most 7 triangles.
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