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1 Introduction

This survey might be of interest also for those members of the
Romanian Society of Mathematical Sciences who are teaching in
high schools, or simply love elementary geometry. This is so,
because several intriguing questions we shall be dealing with here
are of that nature.

A triangulation of a 2-dimensional space means a collection of
(full) triangles covering the space, such that the intersection of
any two triangles is either empty or consists of a vertex or of an
edge. A triangle is called geodesic if all its edges are segments, i.e.,
shortest paths between the corresponding vertices. We are inter-
ested only in geodesic triangulations, all the members of which
are, by definition, geodesic triangles.

Colin de Verdière [6] showed how to transform a triangulation
of a compact surface of nonpositive curvature into a geodesic tri-
angulation. The planar case was previously treated by Wagner
[25] (see also Fary [8] and Tutte [24]). From now on, triangulation
will always mean a geodesic one.

Our interest will be focused on triangulations which are non-
obtuse or acute, which means that the angles of all appearing
geodesic triangles are not larger than, respectively smaller than,
π/2.
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Historical notes

In 1953, R. H. MacNeal showed interest in non-obtuse trian-
gulations as they appeared in connection with the discretization
of partial differential equations [19].

The discussion of acute triangulations has one of its origins in
a problem of Stover reported in 1960 by Gardner in his Mathe-
matical Games section of the Scientific American (see [9], [10]).
There the question was raised whether a triangle with one obtuse
angle can be cut into smaller triangles, all of them acute.

Motivated by the proof of the discrete maximum principle, in
1973, Ciarlet, Raviart [5], Strang and Fix [23], and later Santos
[22], were also led to non-obtuse triangulations.

Acute triangulations with triangles which are close to equi-
lateral were considered, on Riemannian surfaces, by Colin de
Verdière and Marin [7].

Also, Baker, Grosser and Rafferty [1], as well as Bern, Mitchell
and Ruppert [2], investigated non-obtuse triangulations of poly-
gons.

Extensions to three dimensions were considered by Kř́ıžek and
Qun [16], Korotov and Kř́ıžek [17], Korotov, Kř́ıžek and Neit-
taanmäki [18].

We shall mainly concentrate here on acute triangulations. In
general, non-ontuse triangulations are easier to provide, the con-
structions are simpler. For a given surface, or class of surfaces,
the main problems concern

1) the existence of acute (or non-obtuse) triangulations;
2) the (smallest) number of triangles needed.

Polygons

One direction of research concerns polygons (in the plane).
These ”flat” surfaces have boundary. Thus, vertices of the trian-
gulation are allowed anywhere on the boundary, not only at the
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vertices of the polygon. In this direction, Burago and Zalgaller [3]
obtained the first results – and very early, in 1960. They proved
the existence of acute triangulations, even for complexes of poly-
gons. In [3], they accidentally also answered Stover’s problem
mentioned above: they showed that any non-acute triangle can
be triangulated with 7 acute triangles. (This number is smallest
possible.)

In 1980, Cassidy and Lord [4] considered acute triangulations
of the square. They showed that it admits a triangulation with
8 acute triangles. In fact, this is true for any rectangle, and the
number is best possible [11].

Recently, Maehara investigated acute triangulations of quadri-
laterals [20] and other polygons [21]. He proved that any quadri-
lateral can be triangulated with 10 acute triangles, and also that
this bound cannot be improved. However, the exact bound for
convex quadrilaterals is still unknown, since Maehara’s example
requiring 10 acute triangles is non-convex.

Concerning polygons with n sides, Maehara proved that there
always exists a triangulation with O(n) acute triangles.

The only ”non-flat” surfaces with boundary which have been
considered so far are the spherical triangles. Itoh and Zamfirescu
[15] established that every such triangle (with angles less than π)
can be triangulated with at most 10 acute triangles, and this is
best possible.

Regular polyhedral surfaces

Much attention received also the acute triangulation of closed
surfaces without boundary.

Suppose the surface S is diffeomeorphic to the sphere S2. If it
admits an acute triangulation T , then the degree of each vertex
of T must be at least 5. The smallest planar graph with minimal
degree at least 5 is (the 1-skeleton of) the regular icosahedron.
But there is no guarantee that S admits indeed this triangulation
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with 20 triangles! The sphere S2, more generally any ellipsoid of
revolution, and moreover the nondifferentiable surfaces of the reg-
ular icosahedron and dodecahedron (for the latter take its dual),
they all do. But many others don’t.

We first consider the following problem from [11].

Problem 1. Find the minimal number of triangles of a non-
obtuse, respectively acute, triangulation of the Platonic surfaces
in the nontrivial cases, i.e., for the surface of the cube, of the
regular dodecahedron, and of the regular icosahedron.

In [11] Hangan, Itoh and Zamfirescu proved that the surface
of a cube admits several acute triangulations with 24 triangles,
and no acute triangulation with fewer triangles.

For the regular tetrahedron and octahedron, their natural tri-
angulation is optimal in the sense that it contains the smallest
number of triangles. In [13], Itoh and Zamfirescu treated the
case of the regular dodecahedron. They found an acute trian-
gulation with only 14 triangles and proved that there is no such
triangulation with less than 12 triangles. The question whether
a triangulation with 12 acute triangles does or does not exist is
still open.

The case of the regular icosahedron was first considered by
Itoh [12], who provided acute triangulations with n triangles for
all even numbers n ≥ 16. In [11], Hangan, Itoh and Zamfirescu
described an acute triangulation with 14 triangles only. Finally,
in [14], Itoh and Zamfirescu presented a triangulation with 12
acute triangles and proved the impossibility of any smaller one.

Concerning the non-obtuse triangulations, (the surfaces of)
the regular tetrahedron and octahedron admit nothing better
than their own 1-skeleton; the cube admits a triangulation with
4 triangles, all angles of which are right [14]; the dodecahedron
admits a triangulation with 5 acute and 5 right triangles [13]; the
icosahedron can be triangulated with 2 acute and 6 right trian-
gles [14]. All these are best possible (regarding the number of
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non-obtuse triangles).

2 Other closed surfaces

Regarding the arbitrary closed convex polyhedral surfaces, we
only know the existence, proved by Burago and Zalgaller [3], of
an acute triangulation.

Just in the special case of the doubly covered convex n-gon
we have a bound on the needed number of triangles, derived from
work of Bern, Mitchell and Ruppert [2] and Maehara [21].

Not even for the family of all tetrahedral surfaces is any num-
ber N known, such that each surface in the family admits a tri-
angulation with at most N acute triangles.

And more difficult is, of course, an answer to the following
problem, first raised by Hangan, Itoh and Zamfirescu in [11].

Problem 2. Does there exist a number N such that every closed
convex surface in IR3 admits an acute triangulation with at most
N triangles?

Note that even the existence of an acute triangulation for an
arbitrary closed convex surface is not proven so far.

Concerning differentiable surfaces, very little is known. Be-
sides the mentioned case of the ellipsoids of revolution, the only
important achievement is the existence result in the mentioned
paper by Colin de Verdière and Marin [7].

However, work is in progress. And there are many interesting
classes of surfaces, restricted to which Problem 2 is both abord-
able and challanging.

3 A generalization

We eventually break the usual frame of a survey, and propose a
certain generalization. The attempt of triangulating more general
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metric spaces is tentalizing, but rarely successful. The problems
concern the triangle sides, which should be something like seg-
ments, and the triangle interiors, whose points need an assign-
ment rule. If we don’t care about such things, we can think of the
following embedding problem as a generalization of the original
triangulation problem.

Let (X, ρ) be a metric space. For any three points a, b, c ∈ X,
we say that the angle abc is acute if ρ(a, c)2 < ρ(a, b)2 + ρ(b, c)2.
A triple {a, b, c} is called triangle if ρ(a, c) < ρ(a, b) + ρ(b, c) and
the other two analogous inequalities hold. A triangle is acute if
all its three angles are acute.

Problem 3. Given (X, ρ), which combinatorial triangulations
can be acutely embedded in X ? And what is the smallest possible
number of acute triangles?

(A combinatorial triangulation is a finite set of triangles, i.e.,
triples, each triple being the vertices of a triangle in some usual
triangulation of a closed surface. The embedding is just combina-
torial. It is acute if the triples, after performing the embedding,
become acute triangles.)

Consider, for example, the plane IR2. The smallest triangula-
tion, K4, cannot be acutely embedded in IR2. But (the 1-skeleton
of) the double pyramid over the pentagon can. Just take a regular
pentagon p1...p5, and two points q1, q2 close to its centre. Then
all triangles pipi+1qj (i = 1, ..., 5, j = 1, 2; p6 = p1) are acute. Is
10 the smallest possible number of acute triangles?

Exercise. Show that (the 1-skeleton of) the regular octahe-
dron can be acutely embedded in (X, ρ) if X includes a Jordan
closed curve.

Problem 3 can be put for any metric spaces, also for discrete
ones. So (X, ρ) can be a graph with its usual integer-valued met-
ric. Or even a triangulation!
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For the infinite regular triangular lattice in the plane, I see an
acutely embedded triangulation (of the projective plane) with 12
triangles. Can you do better? (Yes!)
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