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Abstract. We prove here that the surface of the regular icosahedron can be triangulated
with 8 non-obtuse and with 12 acute triangles. We also show these numbers to be smallest
possible.

1. Introduction

In 1953 MacNeal showed interest in non-obtuse triangulations as they appeared in con-
nection with the discretization of partial differential equations [17].

The discussion of acute triangulations has one of its origins in a problem of Stover
reported in 1960 by Gardner in his Mathematical Games section of the Scientific Amer-
ican (see [8] and [9]). There the question was raised whether a triangle with one obtuse
angle can be cut into smaller triangles, all of them acute. In the same year, indepen-
dently, Burago and Zalgaller [2] investigated in considerable depth acute triangulations
of polygonal complexes, being led to them by the problem of their isometric embedding
into R3. (Accidentally, their paper also includes a solution to Stover’s problem!)

Motivated by the proof of the discrete maximum principle, in 1973 Ciarlet and Raviart
[4] and Strang and Fix [21], and later Santos [20], were also led to non-obtuse triangu-
lations.

In 1980 Cassidy and Lord [3] considered acute triangulations of the square. Recently,
Maehara investigated acute triangulations of quadrilaterals [18] and other polygons [19].
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the University of Dortmund, Germany, 2002. The second author was partially supported by JSPS at Kumamoto
University, Japan, 2002.
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Acute triangulations with triangles which are close to equilateral were considered by
Gerver [10] and, on Riemannian surfaces, by Colin de Verdière and Marin [6]. Also,
Baker et al. [1] investigated non-obtuse triangulations of polygons. Extensions to three
dimensions were considered by Křı́žek and Qun [14], Korotov and Křı́žek [15] and
Korotov et al. [16].

A triangulation of a two-dimensional space means a collection of (full) triangles
covering the space, such that the intersection of any two triangles is either empty or
consists of a vertex or of an edge. A triangle is called geodesic if all its edges are segments,
i.e., shortest paths between the corresponding vertices. We are interested only in geodesic
triangulations, all the members of which are, by definition, geodesic triangles.

Colin de Verdière [5] shows how to transform a triangulation of a compact surface
of non-positive curvature into a geodesic triangulation. The planar case was previously
treated by Wagner [23] (see also [7] and [22]). From now on, triangulation will always
mean a geodesic one.

Our interest is focused on triangulations which are non-obtuse or acute, which means
that the angles of all appearing geodesic triangles are not larger than, respectively smaller
than, π/2.

We started together with Hangan in [11] the investigation of acute triangulations of
all Platonic surfaces, which are the surfaces of the five well-known Platonic solids.

For the regular tetrahedron and octahedron, their natural triangulation is optimal in the
sense that it contains the smallest number of triangles. Among the remaining non-trivial
cases only the cube was treated completely [11]. This study was continued for the case
of the regular icosahedron by Itoh [12], who provided triangulations with n triangles for
all even numbers n ≥ 16. Also, in [13], we treated the case of the regular dodecahedron,
completely settled the non-obtuse case and found a surprisingly small acute triangulation
(with 14 triangles only). The question whether a triangulation with 12 acute triangles
does or does not exist is still open.

Here we treat the case of the regular icosahedron. We regard our work as a small step
towards a solution to the following problem first raised in [11]. We consider this problem
very natural, and far from trivial.

Problem 1. Does there exist a number N such that every compact convex surface in
R

3 admits an acute triangulation with at most N triangles?

Of course, Problem 1 can be extended (or restricted) to other families of surfaces (such
as Riemannian), with or without boundary. Even more generally, families F of two-
dimensional triangulable compact topological spaces may be considered. In particular,
F can consist of two-dimensional compact Alexandrov spaces with a common lower (or
upper) bound for the curvature. Even the very particular family of all tetrahedral surfaces
seems to be quite interesting.

In the previous paper [11] the following problem was formulated.

Problem 2. Find the minimal number of triangles of a non-obtuse, respectively acute,
triangulation of the Platonic surfaces in the non-trivial cases, i.e., for the surface of the
cube, of the regular dodecahedron and of the regular icosahedron.
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In [11] we proved together with Hangan that the surface of a cube admits several
acute triangulations with 24 triangles, and no acute triangulation with fewer triangles.
What about its non-obtuse triangulations?

The surface of a cube admits a non-obtuse triangulations with four triangles! Indeed,
if we denote the vertices of the upper square by a, b, c, d with a and c non-adjacent, and
denote the vertex of the bottom square which is adjacent to a (resp. b, c, d) by a′ (resp.
b′, c′, d ′), then the four equilateral triangles bda′, bdc′, a′c′b, a′c′d form a non-obtuse
triangulation.

Clearly, each triangulation of any two-dimensional manifold has an even number of
triangles.

In this paper we completely settle both questions about the minimal non-obtuse and
the minimal acute triangulation of the regular icosahedral surface. We construct a highly
asymmetrical triangulation with 12 triangles and are convinced that a (minimal) example
possessing any symmetry does not exist.

2. Non-Obtuse Triangulations

Theorem 1. The surface of the regular icosahedron admits a non-obtuse triangulation
with eight triangles and no non-obtuse triangulation with fewer triangles.

Proof. Figure 1 describes the surface of a regular icosahedron (on the left-hand side
the upper half of ten equilateral triangles, on the right-hand side the lower half of ten
equilateral triangles). Take a face abc of the left-hand side of Fig. 1. Let a′ (resp. b′, c′)
be the antipodal vertex of a (resp. b, c). Draw the segments from a (resp. b and c) to
b′, c′ (resp. c′, a′ and a′, b′). We get the non-obtuse triangles

abc, a′b′c′, ab′c′, bc′a′, ca′b′, a′bc, b′ca, c′ab.

Indeed, abc and a′b′c′ are equilateral and planar. In the case of the triangle ab′c′, there
are two right angles at b′ and c′, while ∠b′ac′ = π/3. The remaining triangles are all
congruent to ab′c′. Hence all eight triangles are non-obtuse.

We prove now that eight is the smallest possible number of non-obtuse triangles. The
only triangulations of the sphere with less than eight triangles are K4 and the 1-skeleton
of the double pyramid over a triangle. In both cases there are vertices with degree 3. If
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the triangulation is non-obtuse, at such a vertex the total angle around it is at most 3π/2.
However, at each vertex of the icosahedron the total angle is 5π/3 > 3π/2. Hence there
are no non-obtuse triangulations of the icosahedron with less than eight triangles.

3. Acute Triangulations with Few Triangles

Let I be the 1-skeleton of the regular icosahedron. The graph-theoretic distance dI(v,w)
between vertices v,w of I is called the I-distance. The intrinsic distance on the surface
between two points p, q is denoted by |pq|.

Theorem 2. The regular icosahedral surface admits an acute triangulations with 12
triangles, and no acute triangulation with fewer triangles.

Proof ( first part). Assume the edges of the icosahedron have length 1. We present an
acute triangulation consisting of 12 triangles.

First, we fix an antipodal pair of vertices a, b and a vertex a′ adjacent in I to a. Take
a vertex b′ adjacent to b, at I-distance 2 from both a and a′. Denote (consecutively)
the other vertices around a by a1, a2, a3, a4. Also, denote the other vertices around b by
b1, b2, b3, b4, such that b1 is adjacent to a2, a3 (see Fig. 2).

Let d (resp. c′) be the midpoint of the line-segment joining the midpoints of b1a2

(resp. a1b2) and b1a3 (resp. a1b3). Denote the midpoint of b′a4 by x and the midpoint
of a3a4 by y. Let c be the midpoint of the line-segment joining x with the midpoint c+

of xy. Let z be the midpoint of b3b4. Take the point d ′ on b4z such that ∠d ′a′c′ = π/2.
It will be shown later that ∠d ′bb4 < π/12, ∠bd ′c′ < π/2, and the segments a′b4

and cd ′ are orthogonal, whence ∠cd ′a′ < π/2. We choose a point d∗ on d ′z close
to d ′, such that ∠d∗bb4 < π/12, ∠bd∗c′ < π/2 and ∠cd∗a′ < π/2 too. Note that
∠d∗a′c′ < ∠d ′a′c′ = π/2 and ∠d∗bc′ < ∠b4bc′ = π/2. Take a point c∗ on c′a1 close
to c′, such that still ∠d∗a′c∗ < π/2 and ∠d∗bc∗ < π/2. More conditions about how
close c∗ and c′ must be appear later.

We got a triangulation with 12 triangles:

aa′c, aa′c∗, acd, ac∗d, a′cd∗, a′c∗d∗, bb′d, bb′d∗, b′cd, b′cd∗, bc∗d, bc∗d∗.

There are two shortest paths from b to d; here we chose the path crossing b1b2.
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We show that all these triangles are acute.
First note that, in the plane� on which the icosahedron is unfolded in Fig. 2, the circle

C of centre m and radius
√

3/2 passes through y. (The point m ∈ � is shown in Fig. 2.)
Since, in �, the angle xym is right, the line-segment xy is tangent to C at y. This fact
yields∠ata′ < π/2 not only in� but on the icosahedron too, for every point t ∈ c+x . In
particular,∠aca′ < π/2,∠ac+a′ < π/2 (for any choice of the segment c+a′) and, since
{a, c+, a′} and {a′, c′, a} are congruent, ∠a′c′a < π/2 (for any choice of the segment
ac′). When choosing the point c∗ we arrange that ∠a′c∗a < π/2 too. Since d∗ lies
between z and b4,∠b4a′d∗ < π/6 and∠ca′d∗ < ∠a4a′z = π/2. From the construction,
∠d∗a′c∗ < π/2 and ∠aa′c∗ < ∠aa′c′ < π/2. Moreover, ∠dac∗ < ∠daa1 = π/2,
∠dac < ∠daa4 = π/2, ∠c∗aa′ < ∠b2aa′ = π/2, ∠caa′ < ∠b′aa′ = π/2 and
∠ca′a < ∠b′a′a = π/2. Around a and a′ we have checked all angles.

Next we consider the angles around b and b′. It is clear that ∠d∗b′b < π/3, ∠dbb′ <
∠a2bb′ = π/2, ∠d∗bb′ < ∠a′bb′ = π/2, ∠dbc∗ < ∠b1bc′ = π/2 and ∠db′b <

∠a2b′b = π/2, while ∠d∗bc∗ < π/2 by construction.
Since |cx |/|cy| = 1

4 but |xb′|/|yb′| = 1/
√

3 > 1
4 , we have ∠xb′c < ∠yb′c. Thus,

∠a4b′c < π/12. Moreover, ∠b′ax < ∠a4ax . Hence

∠d ′a′b4 = ∠c′a′b2 = ∠c+ab′ < ∠b′ax <
π

12
.

Obviously,∠d ′b′b4 < ∠d ′a′b4, whence∠d ′bb4 < π/12 and, by construction,∠d∗bb4 <

π/12 too. Hence

∠cb′d∗ = ∠cb′a4 + π
3
+ ∠d∗b′b4 <

π

2
.

Let p and q denote the midpoints of b1a3 and b′a3 respectively, and {r} = b′d ∩ b1a3

(see Fig. 3). Ceva’s theorem with respect to the triangle a3 pq and the line through b′

and d gives |pr | = 1
10 , whence tan∠db′a2 =

√
3/15. If c− is the orthogonal projection

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�T

T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T

aaaaaaaaaaaaaa

T
T
T
T
TT

b
bb

�
�
�
�
�
��

a2

b1 b0

a3

a

a4
y

d p q
x

c

c+

c�

r

Fig. 3



202 J. Itoh and T. Zamfirescu

of c+ on a4b′, then |c+c−| = √3/8 and |b′c−| = 5
8 . Thus,

tan∠a4b′c >
|c+c−|/2
|b′c−| =

√
3

10
.

Hence ∠a4b′c > ∠db′a2, which yields ∠cb′d < π/2.
Consider now the angles around d. From the choice of c∗ it follows that ∠adc∗ <

∠adc′ = π/2. Further,∠adc < ∠adx = π/2. Also,∠b′db = ∠ac′a′ < π/2, as shown
previously. It is clear that ∠bdc′ < π/2. By taking c∗ close enough to c′, we assure
∠bdc∗ < π/2.

Obviously, ∠b′dc is smaller than the angle between a3b′ and dc, which is smaller
than the angle between a3b′ and b1c, which is smaller than the right angle between a3b′

and b1a4.
We pass to the angles around c. We have

tan∠cdx = |cg|
|dg| =

√
3

19
,

where g is the orthogonal projection of c on dx . Also,

tan∠cab′ = |c f |
| f a| >

√
3

12
,

where f is the orthogonal projection of c on b′a (see Fig. 4). Hence ∠cdx < ∠cab′,
which implies ∠acd < π/2.

We already saw that ∠aca′ < π/2. It is clear that ∠a′cd∗ < ∠a′cb4 < π/3.
Let e be the intersection of the line through f and c with the perpendicular to a4a′

through d ′. Simple calculations show that |b′ f | = |d ′e| = 5
√

3/16, | f c| = 3
16 , |d ′z| = 3

8
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and |ce| = 15
16 . Hence

tan∠cb′ f =
√

3

5
<

√
3

3
= tan∠ecd ′,

which implies ∠b′cd ′ < π/2. It is clear that ∠b′cd < π/2.
Now consider the angles around c∗. The angle ac∗a′ was shown to be acute. Also,

∠ac′d < ∠a1cd = π/2, and if c∗ is close enough to c′, then ∠ac∗d < π/2 too. Clearly,
∠dc∗b < ∠dc′b = π/2 and

∠bc∗d∗ < ∠bc′d∗ < ∠bc′b4 <
π

2
.

Because |a′c∗| > |a′a1| > |a′d∗|, we have ∠a′d∗c∗ > ∠a′c∗d∗, whence ∠a′c∗d∗ <
π/2.

Finally, we consider the angles around d∗. It is clear that∠a′d∗c∗ < ∠a′d∗b3 < π/2.
We found above that tan∠ecd ′ = √3/3, which means that ∠ecd ′ = π/6. Hence d ′c
is orthogonal to a′b4; therefore ∠b′d ′c < π/2. Also, ∠b′d∗c < ∠b′d ′c < π/2. It is
obvious that ∠bd∗b′ < ∠bb4b′ = π/3.

Let v,w denote the midpoints of b3a1, b3a′ respectively (see Fig. 5). We already
found |d ′z| = 3

8 . Hence

|b4d ′| = 1
8 <

1
4 = |vc′|.

It follows that the angle α between b4w and d ′c′ is larger than ∠wb4v. We also already
found that tan∠db′a2 =

√
3/15. Moreover,

∠db′a2 = ∠c′a′v = ∠b4a′d ′ = ∠b4bd ′

and tan∠wb4v =
√

3/9. So,

α > ∠wb4v > ∠db′a2 = ∠b4bd ′.
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Hence ∠bd ′c′ < π/2. Now, our initial construction guarantees that ∠bd∗c′ < π/2 too.
Finally, by construction, ∠cd∗a′ < π/2.

We finished the proof that all triangles are acute.

4. No Acute Triangulation with Even Fewer Triangles

We start by proving the following lemma.

Lemma 1. Suppose a, b, b′ are vertices of the acute triangulation T of the regular
icosahedral surface, such that a has degree 4 in T , bb′ is an edge of I but not of T and
b, b′ are neighbours of a in T . Then ∠abb′ > 2π/3 and ∠ab′b > 2π/3.

Proof. The above vertices b, a, b′ of T form a path of length 2 in T .
Since the degree of a in T is 4, a is a vertex of I. Because ab and ab′ are non-

consecutive edges of T at a and T is acute, necessarily ∠bab′ > 2π/3.
After fixing the edge bb′, we look for the possible location of a.
If dI(a, b) = dI(a, b′) = 1, then ∠bab′ = π/3, which is bad. If dI(a, b) = 2

and dI(a, b′) = 1, then ∠bab′ = π/6, even worse. If dI(a, b) = dI(a, b′) = 2, then
∠bab′ = π/3, bad again.

The only remaining case (essentially) is dI(a, b) = 3 and dI(a, b′) = 2, when a
and b are opposite vertices of the icosahedron. Looking at Fig. 2 we find points a, b, b′

in such a position. There are ten segments from a to b. By choosing one of those two
closest to a1 as ab, we indeed have ∠bab′ > 2π/3, for all the other eight this inequality
fails to be true. Then ∠abb′ > 2π/3 and ∠ab′b = 5π/6 > 2π/3 too.

Proof of Theorem 2 (last part). By Theorem 1, we only have to show that there is no
acute triangulation of the regular icosahedral surface with eight or ten triangles.

Suppose there exists an acute triangulation T of the regular icosahedral surface con-
taining eight triangles. The only triangulation of the sphere with eight triangles and
degree at least 4 at every vertex is the 1-skeleton of the regular octhedron. All its vertices
have degree 4. Therefore all vertices of T are vertices of I.

It is easily seen that any acute angle pqr between two segments pq and qr joining
vertices of the icosahedron is at most π/3 or equals∠bb1x or equals∠ab1x (see Fig. 2).
The second and third values appear only if q is antipodal either to p or to r .

Let p0 be a vertex of T . Because the triangulation is acute, among the four angles
around p0 at most one can be equal to or less than π/3. Further, at most two among the
angles around p0 can take the second or third value mentioned above, because at most
one of the four distinct neighbours of p0 can be antipodal to p0. Since there is a fourth
angle at p0, a contradiction is obtained.

Suppose now that a triangulation T with ten acute triangles exists. The only triangula-
tion of the sphere with ten triangles and degree at least 4 at every vertex is the 1-skeleton
of the double pyramid over the pentagon. Let C5 be the 5-cycle in T containing all
4-valent vertices. Clearly, the vertices of C5 must be vertices of I.

We claim that there are two vertices p1, p2 of C5 such that p1 p2 is an edge of I.
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Indeed, suppose this is not true. Then all five neighbours in I of p1 ∈ C5 do not
belong to C5. Among all five vertices at I-distance 2 from p1 there are at most two
vertices in C5. Now, only one vertex is left, while C5 contains five vertices! So, the claim
is proved.

We further claim that there are three vertices p1, p2, p3 ∈ C5 such that p1 p2 and
p2 p3 are edges of I. Indeed, we already found an edge p1 p2 of I with p1, p2 ∈ C5, but
suppose the new claim is wrong. Then the six vertices of I at I-distance 1 from {p1, p2}
are not in C5. So the remaining K4 minus one edge must contain the other three vertices
of C5, which is impossible without contradicting the assumption. Also the second claim
is true.

Clearly, p1 p2 and p2 p3 cannot both be edges of T , because if they were, then
∠p1 p2 p3 ≤ 2π/3 and T would not be acute.

The cycle C5 contains two more vertices, p4 and p5. So there are (essentially) two cases
concerning the order on C5: p1, p4, p2, p5, p3 and p1, p2, p4, p3, p5. Also, dI(p1, p3)

may be 1 or 2.

Case p1, p4, p2, p5, p3. The presence of the segment p1 p3 implies

∠p1 p2 p4 + ∠p4 p2 p5 + ∠p5 p2 p3 ≤ 4π

3
.

(If dI(p1, p3) = 1, the sum is 4π/3, if dI(p1, p3) = 2, the sum is π .) However,
∠p1 p2 p4 > 2π/3 and ∠p5 p2 p3 > 2π/3 by Lemma 1, and a contradiction is obtained.

Case p1, p2, p4, p3, p5. We have

∠p1 p2 p4 + ∠p4 p2 p3 ≤ 4π

3
.

(If dI(p1, p3) = 1, the sum is π/3 or 4π/3, if dI(p1, p3) = 2, the sum is 2π/3 or π .)
However, ∠p1 p2 p4 > 2π/3 because T is acute, and ∠p4 p2 p3 > 2π/3 by Lemma 1. A
contradiction is obtained again.
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17. R. H. MacNeal, An asymmetrical finite difference network, Quart. Appl. Math., 11 (1953), 295–310.
18. H. Maehara, On acute triangulations of quadrilaterals, Proc. JCDCG 2000, to appear.
19. H. Maehara, Acute triangulations of polygons, European J. Combin., 23 (2002), 45–55.
20. V. R. Santos, On the strong maximum principle for some piecewise linear finite element approximate

problems of non-positive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 473–491.
21. G. Strang, G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.
22. W. Tutte, How to draw a graph, Proc. London Math. Soc., 13 (1963), 743–768.
23. K. Wagner, Bemerkungen zum Vierfarbenproblem, Jahresber. Deutsch. Math.-Verein., 46 (1936), 26–32.

Received September 25, 2002, and in revised form January 9, 2003, and February 5, 2003.
Online publication October 2, 2003.


