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ON THE CUT LOCUS IN ALEXANDROV SPACES AND
APPLICATIONS TO CONVEX SURFACES

Tudor Zamfirescu

Alexandrov spaces are a large class of metric spaces that
includes Hilbert spaces, Riemannian manifolds and convex
surfaces. In the framework of Alexandrov spaces, we examine
the ambiguous locus of analysis and the cut locus of differen-
tial geometry, proving a general bisecting property, showing
how small the ambiguous locus must be, and proving that
typically the ambiguous locus and a fortiori the cut locus are
dense.

Introduction

A metric space is called an Alexandrov space if it is an intrinsic metric space
with curvature bounded below in the sense of Alexandrov (see definition on
page 376). Such spaces were introduced by A.D. Alexandrov in 1955, along
with spaces with curvature bounded above.

Hilbert spaces, Riemannian manifolds, convex surfaces, and convex sub-
sets of these are examples of Alexandrov spaces.

This paper considers the ambiguous locus of analysis and the cut locus
of differential geometry in the framework of Alexandrov spaces. We prove a
general bisecting property, then show how small the ambiguous locus must
be, and finally prove that typically the ambiguous locus and a fortiori the
cut locus must be dense.

In fact, we discover that the apparently distant notions of cut locus and
ambiguous locus share a common soul. Some more (metamathematical)
searching brings to light another two independent developments of the same
notion.

The ambiguous locus has been investigated by — among others — de Blasi
and Myjak [3], [4], [5]; de Blasi, Kenderov and Myjak [6]; Myjak and Rud-
nicki [21]; Zhivkov [41]; de Blasi and Zamfirescu [7].

The cut locus, introduced by Poincaré in 1905 [25], received its name
from Whitehead in 1936; it was studied by Myers in 1935–36 [19], [20], and
subsequently by many other authors in the context of Riemannian geometry.
Their contributions grew to what is today a large, well-established body of
results.
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More recently, Otsu and Shioya [22], Shiohama and Tanaka [27], Itoh
[15], Zamfirescu [38] and others have investigated the cut locus in Alexan-
drov spaces. Shiohama and Tanaka considered in [27] the cut locus with
respect to a compact set.

Independently, A. Rivière [26] studied the cut locus (under the name of
“nervure”) with respect to closed subsets of a Euclidean space.

A fourth independent appearance of the cut locus (or, more exactly, of
the ambiguous locus), with a more applied background, under the name of
“medial axis”, appears in papers by Lee [17], Lee and Drysdale [18], Yap
[29], Choi, Choi and Moon [10], and others.

Kunze [16] and Zamfirescu [39] have treated problems on the cut locus
in the case of closed convex hypersurfaces without any differentiability as-
sumptions.

By making use of the notion of porosity we shall see how small (σ-porous)
the ambiguous locus must always be, and also how large (dense) it can some-
times be. These results relate to work in Banach spaces and in Riemannian
manifolds.

Definitions. We work in a metric space (A, ρ).
A segment between two distinct points is a shortest path between them —

a minimal segment in Otsu and Shioya’s terminology [22].
A segment between a point x and a closed set K not containing x is an

arc between x and a point of K, not longer than any other such arc.
A geodesic is a curve which is locally a segment (for a precise definition

see, e.g., [38]).
A geodesic triangle is a triangle with segments as sides.
Let Sk denote the 2-dimensional complete simply-connected Riemannian

manifold of constant curvature k < 0 (a Lobachevskii plane).
If a, b, c belong to the metric space (A, ρ), let ∠∗abc denote the angle of

the geodesic triangle in Sk of side-lengths ρ(a, b), ρ(b, c), ρ(c, a), opposite to
the side of length ρ(c, a).

Here, (A, ρ) is called an intrinsic metric space if any two points admit a
midpoint. An Alexandrov space is a complete intrinsic metric space (A, ρ)
such that every point of A has a neighbourhood in which, for any four
distinct points a, b, c, d, we have

∠∗bac+ ∠∗cad+ ∠∗dab ≤ 2π.

This angle condition says that (A, ρ) has curvature bounded below by k in
the sense of A.D. Alexandrov (note the dependence of ∠∗ on k).

Berestovskii [2] proved that a complete intrinsic metric space (A, ρ) is an
Alexandrov space if and only if every point of A has a neighbourhood in
which any four points admit an isometric embedding in Sk′ for some k′ ≥ k.
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Several other characterizations of Alexandrov spaces are given by Burago,
Gromov and Perelman in [9]. We use some basic concepts and results devel-
oped in [9] and further investigated by Perelman [23], [24]. So, for example,
in any Alexandrov space a geodesic starting at x has a direction at x (see
the definition below) and the angle between two geodesics exists. Moreover,
geodesics do not branch. The interested reader should consult the recent
book of Burago, Burago and Ivanov [8].

Prerequisites

If x is a point in the Alexandrov space A, the space Σx of directions at
x is defined as the completion of the metric space Σ′

x consisting of classes
of geodesics starting at x, all the geodesics of the same class overlapping,
and the distance being the angle between representatives (see [9], p. 23).
We shall identify the elements of Σ′

x with the directions of representatives.
Every space of directions is known to be itself an Alexandrov space if A has
finite dimension [9].

Let xy denote the direction of the segment xy at x.
We say that a set A ∈ A has a direction τ at its accumulation point x if,

for y → x with y ∈ A \ {x}, xy converges in Σx to τ .
If pa, pb are geodesics, let ∠apb denote the angle between pa and pb, i.e.,

the distance from pa to pb.
We now recall three basic results from [9].

Lemma 1 ([9], p. 6). If pa, pb, pc are geodesics in an Alexandrov space,

∠apb+ ∠bpc+ ∠cpa ≤ 2π.

Here is a generalized form of Toponogov’s comparison theorem:

Lemma 2 ([9], p. 7). For any geodesic triangle abc in an Alexandrov space,

∠∗abc ≤ ∠abc, ∠∗bca ≤ ∠bca, ∠∗cab ≤ ∠cab.

Lemma 3 ([9], p. 6). If in an Alexandrov space the segment piqi converges
to pq and the segment piri converges to pr, then

∠qpr ≤ lim inf
i→∞

∠qipiri.

Let A be an Alexandrov space and K ⊂ A a closed set.
The cut locus C(K) of K is the set of all points x ∈ A such that there is

a segment from x to K not extendable as a segment beyond x.
The multijoined locus of K is the set M(K) of all points x ∈ A such that

the distance from x to K is realized by at least two distinct segments from
x to (not necessarily distinct) points in K. The points of M(K) are said to
be multijoined to K (see also [37]).
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The ambiguous locus of K is the set A(K) of all points x ∈ A such that
the distance from x to K is realized by at least two segments from x to
distinct points in K.

If K consists of a single point x, we write C(x) and M(x) instead of
C({x}) and M({x}), respectively.

A point in A is called an endpoint if it is not interior to any segment; let
E denote the set of all endpoints of A.

Clearly, A(K) ⊂M(K) ⊂ C(K) and E ⊂ C(K).
The open ball with centre x ∈ A and radius α is denoted by B(x, α).
The boundary of a compact convex set with interior points in R

n is called
a convex hypersurface. The space of all convex hypersurfaces, equipped with
the Pompeiu–Hausdorff metric, is a Baire space.

Most (or typical) means “all, except those in a set of first Baire category”.

Lemma 4 ([31]). On most convex hypersurfaces, most points are endpoints.

Equidistant sets

Both the ambiguous locus and the cut locus are known to enjoy a bisecting
property with respect to certain pairs of segments.

Let a, b be (possibly coinciding) points in A. The set E(a, b) of all points
joined by equally long but distinct segments with a and b will be called the
equidistant set of {a, b}. Thus E(a, b) coincides with A({a, b}) if a �= b, and
with M({a}) if a = b.

We shall prove a bisecting property of E(a, b) which lies at the core of
these phenomena.

Let x ∈ E(a, b), and consider distinct segments xa, xb ⊂ A and α, β ⊂ Σx

such that α = xa, β = xb. Also, suppose αβ is a segment in Σx.
A bisector of xa, xb is a nondegenerate arc Γ ⊂ E(a, b) starting at x such

that, for any y ∈ Γ \ {x}:
1) There is a segment xy with xy ∈ αβ.
2) There are segments ya, yb such that ya→ xa and yb→ xb for y → x.

This name is explained by the next theorem.
There may exist no bisector of xa, xb. This is the case, for example, if

a = b and a, x are antipodal on the standard sphere, because then E(a, a)
is a single point and cannot include any nondegenerate arc. But we may
also have no bisector if a �= b: consider a smooth convex (2-dimensional)
surface with precisely two segments from x to a, say σ1, σ2, and precisely
one segment σ3 from x to b such that, for si ∈ intσi,

∠s1xs2 + ∠s2xs3 = ∠s1xs3 < π.

Then σ1 and σ3 admit no bisector, because condition 2 is not satisfied. In
this case, however, σ1, σ2, as well as σ2, σ3, would admit a bisector each.
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Theorem 1. Any bisector of xa, xb has a direction at x, namely the mid-
point of αβ, where α = xa and β = xb.

Proof. Let Γ be a bisector of xa, xb. If y ∈ Γ \ {x} converges to x then
∠∗xay → 0, which implies ∠∗axy + ∠∗ayx → π. Analogously, ∠∗bxy +
∠∗byx→ π. Hence

∠∗axy + ∠∗bxy + ∠∗ayx+ ∠∗byx→ 2π.

By Lemma 2,

lim inf
y→x

(∠axy + ∠bxy + ∠ayx+ ∠byx) ≥ 2π.

Since xy ∈ αβ,

∠axb = ∠axy + ∠bxy.
Hence

lim inf
y→x

(∠axb+ ∠ayx+ ∠byx) ≥ 2π.

Suppose

lim sup
y→x

(∠axb+ ∠ayx+ ∠byx) > 2π.

By Lemma 3,

lim inf
y→x

∠ayb ≥ ∠axb.

Then

lim sup
y→x

(∠ayb+ ∠ayx+ ∠byx) > 2π,

which contradicts the inequality

∠ayb+ ∠ayx+ ∠byx ≤ 2π,

which holds, by Lemma 1, for all y. Hence

∠axb+ ∠ayx+ ∠byx→ 2π.

Using Lemma 2 again, we get ∠axy − ∠∗axy → 0, ∠bxy − ∠∗bxy → 0,
∠ayx− ∠∗ayx→ 0, ∠byx− ∠∗byx→ 0. But ∠∗axy = ∠∗bxy; therefore

∠axy − ∠bxy → 0

and

lim
y→x

∠axy = lim
y→x

∠bxy = 1
2∠axb.

Thus, the proof is finished.
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Multijoined loci in Alexandrov spaces: the arbitrary case

A set A in a metric space (M, ρ) is said to be porous at x ∈ M if there
is a number α > 0 such that every ball centered at x contains a ball
B

(
y, αρ(x, y)

)
disjoint from A. It is called porous if it is porous at all

its points, and σ-porous if it is a countable union of porous sets.
The main result of this section establishes the σ-porosity of the multi-

joined locus of any closed set in an arbitrary Alexandrov space A. This
extends results of Gruber [12], [13] and the author [35].

Otsu and Shioya [22] have shown that the cut locus C(x) of a point x in an
n-dimensional Alexandrov space A has n-dimensional Hausdorff measure 0.
However we cannot expect C(x) to be σ-porous because, by Lemma 4, there
are Alexandrov spaces in which C(x) is residual. About the multijoined
locus Otsu and Shioya proved the stronger assertion dimM(x) ≤ n−1 [22].

Also, Shiohama and Tanaka described in detail, for n = 2, the structure
of C(K) and M(K) for any compact set K [27]. According to them, M(K)
is a countable union of Jordan arcs.

Unfortunately, the Hausdorff dimension being at most n−1 does not imply
σ-porosity (see Zaj́ıček [30]), nor are Jordan arcs necessarily σ-porous (see
Foran [11]).

Lemma 5. Let A be an Alexandrov space and let A ⊂ A be such that,
for some points x, x′ in A and some positive number ε, all points z in a
neighbourhood of x that satisfy ∠∗zxx′ ≤ ε do not belong to A. Then A is
porous at x.

Proof. Let N be the neighbourhood of x considered in the statement. It
suffices to take α = sin ε in the definition of porosity. Then, for any segment
xx′ and any point y ∈ xx′,

z ∈ B
(
y, αρ(x, y)

) ∩N =⇒ sin ∠∗zxy ≤ α =⇒ ∠∗zxx′ ≤ ε.

Hence z ∈ N \A, and A is porous at x.

Theorem 2. In an Alexandrov space, the multijoined locus of any closed
set is σ-porous.

Proof. Let A be an Alexandrov space and let K ⊂ A be closed. For any
m ∈ N, let Mm ⊂ M(K) be the set of all points u joined with K by (at
least) two segments making an angle at x not less than m−1. We have

M(K) =
∞⋃

n=1

Mm,

and we only have to prove that Mm is porous for each m ∈ N.
Consider u, v ∈ Mm and let a, b be interior points of the two segments

from u to K under consideration. If simultaneously

∠auv > π − (2m)−1 and ∠buv > π − (2m)−1,
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then
∠auv + ∠buv + ∠aub > 2π,

which contradicts Lemma 1. Thus, there exists a segment ux from u to K
such that, in the geodesic triangle xuv,

∠xuv ≤ π − (2m)−1.

By Lemma 2, ∠∗xuv ≤ π − (2m)−1 too.
Now, keep v fixed and let u ∈ Mm converge to v. Then ∠∗uxv → 0.

But this yields ∠∗xvu > (3m)−1 for all u ∈ Mm in some neighbourhood
of v. Then, by Lemma 5, Mm is porous at v. Thus, Mm is porous, M(K)
is σ-porous, and the proof is finished.

For the special case of a point x on a convex surface, the σ-porosity of
M(x) was proved in [35] (see also Gruber [12], [13]).

Ambiguous and multijoined loci in Alexandrov spaces:
the generic case

In this section we consider the ambiguous locus in typical cases. We investi-
gate typical compact sets or take the ambient space to be typical. Let K(A)
be the space of all compact sets in the Alexandrov space (A, ρ), endowed
with its usual Pompeiu–Hausdorff metric h, based on ρ.

The next theorem generalizes Theorem 1 from [34] considerably. This
result of [34] has already been repeatedly strengthened, for example in [3],
[4], [5], [6], [41], [7].

Theorem 3. For most compact sets in a separable Alexandrov space of di-
mension at least 2, the ambiguous locus is dense.

Proof. Let B(x0, ε) be an open ball in the Alexandrov space A. We prove
that the compact sets K ⊂ A for which the ambiguous locus A(K) does not
meet B(x0, ε) form a nowhere dense set.

Indeed, in any open set O ⊂ K(A), there exists a compact set K avoiding
x0. Let y0 ∈ K be a point closest to x0 and take y1 different from y0 on a
segment σ from x0 to y0, so thatK∪{y1} ∈ O. There is a whole ball B(y1, η)
disjoint from K such that for any finite set F ⊂ B(y1, η), K ∪ F ∈ O.

Since dimA ≥ 2, we can choose y2 ∈ B(y1, η) \ σ.
Consider the point y3 ∈ σ with ρ(x0, y2) = ρ(x0, y3). Then y3 ∈ B(y1, η)

too. Let σ2, σ3 be segments from x0 to y2, y3 respectively. Choose points
x2 ∈ σ2, x3 ∈ σ3 such that ρ(x, x2) = ρ(x, x3) < ε. Clearly, ρ(x2, y3) >
ρ(x2, y2), ρ(x3, y2) > ρ(x3, y3).

Let
ν < min

{
ρ(x2, y3)− ρ(x2, y2), ρ(x3, y2)− ρ(x3, y3)

}
.
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If h(K ′, K ∪ {y2, y3}) < ν/2 in K(A), then K ′ meets both B(y1, ν/2) and
B(y2, ν/2). Therefore, for i = 2, 3, the point of K ′ closest to xi lies in
B(yi, ν/2). The function

f(x) = d
(
x,K ′ ∩B(y2, ν/2)

) − d
(
x,K ′ ∩B(y3, ν/2)

)
,

where d(x,M) means the infimum of ρ(x, y) for y ∈ M , is continuous,
f(x2) < 0 and f(x3) > 0. Thus there is a point x ∈ x2x0 ∪ x0x3 with
f(x) = 0; that is, x ∈ A(K ′).

Hence the set Km,n ⊂ K(A) of all compact sets K for which A(K) ∩
B(xm, 1/n) = ∅ is nowhere dense. Since A is separable, {xm}∞m=1 can be
chosen to be dense in A, and then the set

⋃∞
m,n=1 Km,n of all compact sets

with nondense ambiguous locus is of first Baire category.

For an interesting analog of Theorem 3 concerning convex hypersurfaces
instead of compact sets, see [40].

There are Alexandrov spaces in which the multijoined locus is dense for
more compact sets than “just” those of a second Baire family. More pre-
cisely, in these spaces, the multijoined locus of any element of an open subset
of K(A) is dense in its complement.

The following result strengthens in several directions Theorem 2 in [35]
and C. Vı̂lcu’s second assertion in the first theorem of [28].

Theorem 4. Let the compact Alexandrov space A be an n-dimensional topo-
logical manifold (n ≥ 2, finite), and A ⊂ A. Assume that the set of endpoints
of A is dense in A (with respect to its relative topology) and K is a closed
subset of a union B of components of A \ A. If B is not dense in A then
the multijoined locus M(K) is dense in the interior of A \B.

Proof. Suppose there is an open set O ⊂ A\B homeomorphic to R
n and dis-

joint from M(K). Since every point y ∈ A\M(K) is joined by precisely one
segment σy to the closest point πy of K, the mapping y �→ σy is continuous
in O. The mapping y �→ πy is continuous too.

If 0 ≤ r ≤ 1 and φ(y, r) denotes the point of σy at distance rρ(y, πy) from
y, then φ is continuous in both variables.

Moreover the function ψr defined by ψr(y) = φ(y, r) is injective for 0 ≤
r < 1, since geodesics do not branch and therefore y �= y′ implies σy ⊂ σy′

or σy′ ⊂ σy or σy ∩ σy′ = {πy} ∩ {πy′}. The inverse of ψr, defined on ψr(O),
is obviously continuous too.

Let y0 ∈ O. For some r distinct from 1, ψr(y0) belongs to A and is
different from y0. We may consider O chosen such that ψr(O) lies in a
neighbourhood of y0 homeomorphic to R

n. Then ψr(O) is open (see, e.g.,
[14, Theorem 6-54]). Hence ψr(O)∩A is nonempty and open in the relative
topology of A. Now choose the endpoint z in this set. Then z must belong
to a segment σy with y ∈ O, and is not an endpoint of σy. This contradiction
completes the proof.
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Corollary 1. In a space A as in Theorem 4, assume that the closed set K
is strictly included in the open set O, and that the set of endpoints of A is
dense in O \K. Then M(K) is dense in A \K.

Example. Consider a smooth torus T embedded in R
3 and a point p ∈ T of

positive Gauss curvature. Near p and outside T take a convex hypersurface
C of the type described in Lemma 4.

If C is small enough and close enough to p, each line segment s joining
a point of C with a point of T and not meeting the interiors (bounded
components of the complements) of C and T has an endpoint on T of positive
Gauss curvature. The union of all line segments s has a boundary S. Then
the (topological) closure of

C ∪ S ∪ T \ (
(C ∩ S) ∪ (S ∩ T )

)

is a torus T ′, the endpoints of which lie densely in C \ S. By Corollary 1,
for any compact set K ⊂ C disjoint from S, M(K) is dense in T ′ \K.

Theorem 5. On most convex hypersurfaces S, for any compact set K ⊂ S,
the multijoined locus M(K) is dense in S \K.

This follows from Corollary 1 and Lemma 4.

By Theorems 3 and 5, we can say that every compact set on most convex
hypersurfaces and most compact sets on every convex hypersurface have
multijoined loci dense in their complements.

In a Baire metric space, “nearly all” means “all, except those in a σ-porous
set” [32].

Lemma 6. On any convex hypersurface, nearly all compact sets are porous.

This follows from Theorem 2 in [33] applied to R
n−1, together with the

observation that the convex hypersurface can be tiled into finitely many
pieces admitting bi-Lipschitz bijections to pieces of R

n−1, while porosity
and σ-porosity are invariant under bi-Lipschitz transformations.

Lemma 6 and Theorem 5 immediately imply the following result:

Theorem 6. On most convex hypersurfaces S, for nearly all compact sets
the multijoined locus is dense on S.

Suggestion. Show that Theorem 6 is also true for the ambiguous locus
instead of the multijoined locus, although Theorem 5 is not.

Acknowledgement. I am very much indebted to the referee and to Silvio
Levy, whose expertise influenced the final form of this paper.
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(1976), 350–359, MR 0457731 (56 #15935), Zbl 0341.30026.

[31] T. Zamfirescu, Many endpoints and few interior points of geodesics, Invent. Math.,
69 (1982), 253–257, MR 0674405 (84h:53088), Zbl 0494.52004.

[32] T. Zamfirescu, Using Baire categories in geometry, Rend. Sem. Mat. Univ. Politec.
Torino, 43 (1985), 67–88, MR 0859850 (87j:52007), Zbl 0601.52004.

[33] T. Zamfirescu, How many sets are porous?, Proc. Amer. Math. Soc., 100 (1987),
383–387, MR 0884484 (88c:54029), Zbl 0625.54036.

[34] T. Zamfirescu, The nearest point mapping is single valued nearly everywhere, Arch.
Math., 54 (1990), 563–566, MR 1052977 (91k:41061), Zbl 0715.54013.

[35] T. Zamfirescu, Conjugate points on convex surfaces, Mathematika, 38 (1991), 312–
317, MR 1147829 (93e:52005), Zbl 0759.52005.

[36] T. Zamfirescu, Conjugate points and closed geodesic arcs on convex surfaces, Geom.
Dedicata, 62 (1996), 99–105, MR 1400984 (97g:52006), Zbl 0866.53050.

[37] T. Zamfirescu, On some questions about convex surfaces, Math. Nachr., 172 (1995),
313–324, MR 1330637 (96e:52004), Zbl 0833.53004.

[38] T. Zamfirescu, Closed geodesic arcs in Aleksandrov spaces, Rend. Circ. Mat. Palermo
(2) Suppl., 50 (1997), 425–430, MR 1603026 (99b:53063), Zbl 0889.53027.

[39] T. Zamfirescu, Extreme points of the distance function on convex surfaces, Trans.
Amer. Math. Soc., 350 (1998), 1395–1406, MR 1458314 (98i:52005), Zbl 0896.52006.

[40] T. Zamfirescu, Dense ambiguous loci and residual cut loci, Rend. Circ. Mat. Palermo
(2) Suppl., 65(II) (2000), 203–208, MR 1809155 (2001j:52007), Zbl 0982.53034.

http://www.emis.de/cgi-bin/MATH-item?0982.53034
http://www.ams.org/mathscinet-getitem?mr=1809155
http://www.emis.de/cgi-bin/MATH-item?0896.52006
http://www.ams.org/mathscinet-getitem?mr=1458314
http://www.emis.de/cgi-bin/MATH-item?0889.53027
http://www.ams.org/mathscinet-getitem?mr=1603026
http://www.emis.de/cgi-bin/MATH-item?0833.53004
http://www.ams.org/mathscinet-getitem?mr=1330637
http://www.emis.de/cgi-bin/MATH-item?0866.53050
http://www.ams.org/mathscinet-getitem?mr=1400984
http://www.emis.de/cgi-bin/MATH-item?0759.52005
http://www.ams.org/mathscinet-getitem?mr=1147829
http://www.emis.de/cgi-bin/MATH-item?0715.54013
http://www.ams.org/mathscinet-getitem?mr=1052977
http://www.emis.de/cgi-bin/MATH-item?0625.54036
http://www.ams.org/mathscinet-getitem?mr=0884484
http://www.emis.de/cgi-bin/MATH-item?0601.52004
http://www.ams.org/mathscinet-getitem?mr=0859850
http://www.emis.de/cgi-bin/MATH-item?0494.52004
http://www.ams.org/mathscinet-getitem?mr=0674405
http://www.emis.de/cgi-bin/MATH-item?0341.30026
http://www.ams.org/mathscinet-getitem?mr=0457731
http://www.emis.de/cgi-bin/MATH-item?0628.68042
http://www.ams.org/mathscinet-getitem?mr=0911190
http://www.emis.de/cgi-bin/MATH-item?0874.53032
http://www.ams.org/mathscinet-getitem?mr=1427770
http://www.emis.de/cgi-bin/MATH-item?0614.57009
http://www.ams.org/mathscinet-getitem?mr=1613382
http://www.emis.de/cgi-bin/MATH-item?36.0669.01
http://www.emis.de/cgi-bin/MATH-item?0815.53072
http://www.ams.org/mathscinet-getitem?mr=MR1220498
http://www.emis.de/cgi-bin/MATH-item?0808.53061
http://www.ams.org/mathscinet-getitem?mr=1274133
http://www.emis.de/cgi-bin/MATH-item?0981.46018
http://www.ams.org/mathscinet-getitem?mr=1811289
http://www.emis.de/cgi-bin/MATH-item?0013.32201
http://www.emis.de/cgi-bin/MATH-item?0012.27502


386 TUDOR ZAMFIRESCU

[41] N.V. Zhivkov, Compacta with dense ambiguous loci of metric projections and antipro-
jections, Proc. Amer. Math. Soc., 123 (1995), 3403–3411, MR 1273531 (96a:41044),
Zbl 0842.41024.

Received May 31, 2001 and revised November 7, 2003

Fachbereich Mathematik
Universität Dortmund
44221 Dortmund, Germany
E-mail address: Tudor.Zamfirescu@math.uni-dortmund.de

This paper is available via http://www.pacjmath.org/2004/217-2-10.html.

http://www.pacjmath.org/2004/217-2-10.html
http://www.emis.de/cgi-bin/MATH-item?0842.41024
http://www.ams.org/mathscinet-getitem?mr=1273531

