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On the length of the cut locus for finitely many points
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There is a priori no nonvanishing lower bound for the length of the cut locus on a
surface with respect to a point. Since the sphere is responsible for this, we considered
in [5] the case of surfaces not homeomorphic to the sphere. With the same motivation
in mind, we investigate here the length of cut loci with respect to finite sets containing
more than one point, on various surfaces.

Throughout this paper, each appearing surface is a compact 2-dimensional
Alexandrov space with curvature bounded below, as defined in [2] or [6]. Thus, it is
equipped with an intrinsic metric and is a topological 2-manifold [2].

For any compact surface S and closed subset MHS, r denotes the intrinsic metric
on S and dðMÞ the intrinsic diameter of M. A segment ab is a shortest path joining
a to b (and has length rða; bÞ). Moreover, CðMÞ denotes the cut locus of M in S, i.e.,
the set of all points x A S such that some shortest path from x to M cannot be ex-
tended as a shortest path to M beyond x, and CcpðMÞ its cyclic part, i.e., the set of
points in CðMÞ admitting two segments to M which do not form a null-homotopic
closed curve.

Let Sx be the (1-dimensional) space of directions at x A S (for a definition, see [2]).
If the diameter of Sx is less than p, x is called singular. Let us call strongly singular

those points x A S for which Sx has diameter at most p=2.
We denote by l the length (1-dimensional Hausdor¤ measure).
We are going to give in Theorems 1–7 various lower bounds for the length of the

cut locus with respect to a set M, which will always be assumed finite and containing
more than one point.

Theorem 1. On any surface S homeomorphic to the sphere S2 there is a pair of points

p1; p2 such that lCcpðp1; p2Þd 2dðSÞ.

Proof. Let a; b be at maximal intrinsic distance on the surface S homeomorphic to

* Partially supported by the Grant-in-Aid for Scientific Research, The Ministry of Educa-
tion, Science, Sports and Culture, Japan.

† Partially supported by JSPS at Kumamoto University in 2002.



S2. It is easily proved that the cyclic part of the cut locus of any pair of points is a
closed Jordan curve.

Let s be a segment from a to b, and fsg ¼ Ccpða; bÞV s. Let t A Ccpða; bÞnfsg.
If rðt; aÞ ¼ rðs; aÞ, put p1 ¼ s, p2 ¼ t. If rðt; aÞ > rðs; aÞ, then the two subarcs of
Ccpða; bÞ joining s with t must contain points p1; p2 such that rðp1; aÞ ¼ rðp2; aÞ.

With this choice of p1; p2, obviously a; b A Ccpðp1; p2Þ. Hence lCcpðp1; p2Þd
2rða; bÞ. r

Theorem 2. For any surface S homeomorphic to S2 without strongly singular points, for
example di¤eomorphic to S2, and for any integer nc 4, there are points p1; . . . ; pn A S

such that lCcpðfp1; . . . ; pngÞd ndðSÞ.

Proof. Let again rða; bÞ ¼ dðSÞ. This time, since Sa has diameter larger than p=2,
there are at least two segments s1; s2 from a to b (see the proof of Theorem 2 in [9];
for S di¤erentiable, see Steinhaus [7]). They cut Ccpða; bÞ at s1; s2, say.

If rðt; aÞ ¼ rðs1; aÞ for infinitely many points t A Ccpða; bÞ, we choose n of them.
For these, the cyclic part of the cut locus equals the union of the n arcs (of equidistant
points) from a to b determined by the n pairs of neighbouring points. Thus, its length
is at least ndðSÞ.

If rðt; aÞ > rðs1; aÞ for all but finitely many t A Ccpða; bÞ, choose two such points
t1 and t2, one in each of the two arcs into which s1 and s2 divide Ccpða; bÞ. For any
number r satisfying

rðs1; aÞ < r < rðti; aÞ

for both i ¼ 1 and i ¼ 2, there are four points at distance r from a, one on each of the
four arcs into which s1; t1; s2; t2 divide Ccpða; bÞ.

Now choose n out of these four points, and proceed as above. r

Let

Cn
i ðSÞ ¼ infflCcpðMÞ : MHS; cardM ¼ ng

and

Cn
s ðSÞ ¼ supflCcpðMÞ : MHS; cardM ¼ ng:

Also, let iðSÞ denote the injectivity radius of S.

Theorem 3. For any surface S and integer nd 2 we have Cn
s ðSÞd ndðSÞ.

Proof. Let rða; bÞ ¼ dðSÞ. Choose e > 0 arbitrarily small. Consider the circle (in the
intrinsic metric) of centre a and radius dðSÞ � e. The topological aspect of circles was
described in Shiohama and Tanaka’s paper [6]. Take a small arc in this circle, and
consecutive points p1; . . . ; pn on this arc. Each pair pi; piþ1 determines a subarc Ai

ði ¼ 1; . . . ; n� 1Þ. Let M ¼ fp1; . . . ; png.
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Inside api U apiþ1 UAi, C
cpðMÞ coincides with Ccpðpi; piþ1Þ and reduces to an arc

joining a with the midpoint of Ai, obviously of length at least dðSÞ � e.
Outside ap1 U apn U6n�1

i¼1
Ai, C

cpðMÞ includes an arc from a to the midpoint of A1,
and has therefore length at least dðSÞ � e.

Hence lCcpðMÞd nðdðSÞ � eÞ, and the inequality in the statement follows. r

Theorem 4. For any surface S we have C2
i ðSÞd 2iðSÞ. If S has genus 1, then

C2
i ðSÞd 4iðSÞ.

Proof. Let p1; p2 A S, take a segment p1 p2 and put fsg ¼ p1 p2 VCcpðp1; p2Þ, i.e.,
rðp1; sÞ ¼ rðp2; sÞ. As an interior point of a segment, s is not singular. We claim that
there is some point in Ccpðp1; p2Þ, di¤erent from s and joined with s by at least two
segments.

Indeed, assume the claimed assertion is false. Let t be a variable point on
Ccpðp1; p2Þ. As t goes around on Ccpðp1; p2Þ, the direction of st moves in Ss between
a position t orthogonal to the direction of sp1 and the antipodal position (at distance
p from t). So, on its way, since it depends continuously on t (due to the uniqueness
of the segment between s and t), it must take either the direction of sp1 or that of sp2,
say the first one.

If t A sp1, then rðp1; tÞ ¼ rðp2; tÞ implies

rðp2; tÞ þ rðt; sÞ ¼ rðp1; sÞ ¼ rðp2; sÞ;

which means that stU tp2 is a segment; this and sp1 would bifurcate, which is impos-
sible (see [2]).

It follows that p1 A st. Since rðp1; sÞ ¼ rðp2; sÞ and rðp1; tÞ ¼ rðp2; tÞ, the arc
sp2 U p2t is also a segment from s to t, di¤erent from the previous one because
p1 0 p2, and this contradicts the assumption.

Now, once the claim is proved, it is clear that lCcpðp1; p2Þd 2lðstÞd 2iðSÞ. In
case S is a torus, the same arguments apply to each of the two disjoint cycles forming
Ccpðp1; p2Þ. r

Theorem 5. Let S be a surface and MHS. If dðMÞc dðSÞ=2, then lCðMÞd dðSÞ=2.

Proof. Let again rða; bÞ ¼ dðSÞ. Assume pa (respectively pb) is a closest point of M
from a (respectively b). (Possibly, pa ¼ pb.) Let qa be a closest point of CcpðMÞ from
pa. (Thus, qa is either the midpoint of a segment pa p or of a segment pa pb.) Further,
if pa 0 a, let ca be the cut point of M in the direction of a segment paa; if pa ¼ a, set
ca ¼ qa. The points cb and qb are defined analogously.

Clearly, rðpa; qaÞc dðMÞ=2 and rðpb; qbÞc dðMÞ=2. Therefore

rða; paÞ þ rðb; pbÞd rðpa; qaÞ þ rðpb; qbÞ;

otherwise
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rða; paÞ þ rðpa; pbÞ þ rðpb; bÞ <
dðMÞ

2
þ dðMÞ þ dðMÞ

2
c dðSÞ;

which is false.
If rðca; cbÞd dðSÞ=2, the conclusion of the theorem follows. If rðca; cbÞ < dðSÞ=2,

then

rða; caÞ þ rðb; cbÞ >
dðSÞ

2
:

Further, rðqa; caÞd rðpa; caÞ � rðpa; qaÞ and, similarly, rðqb; cbÞd rðpb; cbÞ�
rðpb; qbÞ. Hence

rðqa; caÞ þ rðqb; cbÞd rðpa; caÞ þ rðpb; cbÞ � ðrða; paÞ þ rðb; pbÞÞ

¼ rða; caÞ þ rðb; cbÞ >
dðSÞ

2
:

Let Sa;Ga denote the set of all points in S, respectively CcpðMÞ, which are not
closer to a point in Mnfpag than to pa. Also, let G 0

a be the union of all Jordan arcs in
CðMÞ joining points in Ga. Then SanG 0

a is an open topological disc and Ga a union of
pairwise disjoint closed Jordan curves, the boundary of Sa.

Clearly, a; pa; ca A Sa and qa A Ga. Let cac
0
a be the shortest arc in CðMÞ with

c 0a A G 0
a. We proceed in the same way with b instead of a, and get Sb;Gb;G

0
b; c

0
b, with

b; pb; cb A Sb, qb A Gb and c 0b A G 0
b.

Put a ¼ lðGanGbÞ, a 0 ¼ lðG 0
anGaÞ, b ¼ lðGbnGaÞ, b 0 ¼ lðG 0

bnGbÞ, g ¼ lðGa VGbÞ. We
have

lðqac 0aÞc
aþ g

2
þ a 0; lðqbc 0bÞc

b þ g

2
þ b 0;

Figure 1
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whence

lðqac 0aÞ þ lðqbc 0bÞc aþ b þ gþ a 0 þ b 0
c lCcpðMÞ þ a 0 þ b 0

and

lðqacaÞ þ lðqbcbÞc lCðMÞ:

Hence, eventually,

lCðMÞd rðqa; caÞ þ rðqb; cbÞ >
dðSÞ

2
: r

A set in the surface S is called concyclic if it is included in some intrinsic circle of S.
The next theorem refers to a set in S which is not concyclic.

Theorem 6. Let S be homeomorphic to S2, M ¼ fp; pa; pbgHS and rða; bÞ ¼ dðSÞ.
Assume that pa; pb are closest in M from a, respectively b (pa 0 pb), and any point of

S at the same distance from pa and pb has smaller distance from p. If rðp; paÞþ
rðp; pbÞc dðSÞ, then lCðMÞd dðSÞ=2.

Proof. We use the notation from the previous proof. As before, we may suppose
rða; caÞ þ rðb; cbÞ > dðSÞ=2, otherwise we are done.

From the inequality in the statement we get

rðp; paÞ þ rðp; pbÞ � rðpa; pbÞc rða; bÞ � rðpa; pbÞc rða; paÞ þ rðb; pbÞ:

Also,

rðp; qaÞ þ rðp; qbÞ � rðqa; qbÞ ¼ rðp; paÞ þ rðp; pbÞ

� ðrðpa; qaÞ þ rðqa; qbÞ þ rðqb; pbÞÞ

c rðp; paÞ þ rðp; pbÞ � rðpa; pbÞc rða; paÞ þ rðb; pbÞ:

Now, as in the previous proof,

rðqa; caÞ þ rðqb; cbÞd rðpa; aÞ þ rða; caÞ þ rðpb; bÞ þ rðb; cbÞ � rðpa; qaÞ � rðpb; qbÞ:

Any point in Ga VGb would be closer to pa than to p. Hence Ga and Gb are dis-
joint, and there is a unique shortest arc a 0b 0 HCðMÞ with a 0 A Ga and b 0 A Gb. Let
AHCðMÞ be an arc joining qa to qb and missing c 0a if c 0a 0 a 0 and c 0b if c 0b 0 b 0. In this
manner we also find arcs Aa and Ab joining ca to qa and cb to qb, and meeting A only
in qa; qb, and perhaps a 0; b 0.
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Hence

lCðMÞd lAþ lAa þ lAb d rðqa; qbÞ þ rðqa; caÞ þ rðqb; cbÞ

d rðqa; qbÞ þ rðpa; aÞ þ rða; caÞ þ rðpb; bÞ þ rðb; cbÞ � rðpa; qaÞ � rðpb; qbÞ

d rðp; qaÞ þ rðp; qbÞ þ rða; caÞ þ rðb; cbÞ � rðpa; qaÞ � rðpb; qbÞ

¼ rða; caÞ þ rðb; cbÞ >
dðSÞ

2
: r

Theorem 7. Let the surface S be convex, and M ¼ fp; pa; pbgHS. If M is concyclic,
then lCðMÞd dðSÞ=2.

Proof. If dðMÞc dðSÞ=2, the conclusion follows from Theorem 5. Suppose
dðMÞ > dðSÞ=2. Assume, for example, rðpa; pbÞ ¼ dðMÞ. Consider the segments
ppa; ppb and their midpoints qa; qb. From Alexandrov’s convexity condition (see [1],
p. 47), we have

rðqa; qbÞd rðpa; pbÞ=2 > dðSÞ=4:

Let c be the centre of a circle through p; pa; pb. There are two possibilities for the
topological aspect of CcpðMÞ, pictured in Figure 2.

In both cases there are two arcs A1;A2 HCcpðMÞ, both from qa to qb, such that
A1 VA2 H fqa; c; qbg. Consequently,

lCðMÞd lA1 þ lA2 d 2rðqa; qbÞ > dðSÞ=2: r

It is easily seen that lCðMÞ=dðSÞ is not bounded below away from 0, for any
cardinality of M. If M is a single point then CðMÞ can be a single point too. If
cardMd 2, consider a surface as described in Figure 3, with the points of M at the
ends of the ‘‘legs’’.

In the convex case, however, we dare to conjecture that this is not true.

Figure 2
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Conjecture 1. For any smooth convex surface S, if MHS contains more than two

points, then lCðMÞd dðSÞ=2.

Consider an ellipsoid in R3 with a long axis ab and both other axes very short. Let
M have two points at a; b and the others on a segment s joining a to b, all close to the
midpoint of s. In this case the length of CðMÞ is very close to half the diameter of the
ellipsoid. Thus, if true, the lower estimate for the length of the cut locus conjectured
above is best possible.

Conjecture 2. There exist surfaces S such that C2
i ðSÞ > 2dðSÞ.

It was shown in [4] and [6] (see also [8]) that lCðMÞ may be infinite, even for sets
M containing a single point. The cut locus CðMÞ may even fail to be of locally finite
length. More precisely, there are convex surfaces S on which, for any point x, every
open set in S contains a compact subset of CðfxgÞ with infinite 1-dimensional Haus-
dor¤ measure [10]. In the Riemannian case this cannot happen, see Hebda [3] and
Itoh [4]. It is evident, however, that lCðMÞ=dðSÞ has no upper bound depending
only on the cardinality of M.

Even concerning the cyclic part of the cut locus, we showed in [5] that there exists
a sequence of metrics on the torus, for each of which the diameter of the torus is 1
while the length of the cyclic part of some cut locus tends to y.

Concerning the vanishing of Cn
i ðSÞ, we will show the following result.

Theorem 8. Let S be a convex surface and nd 2. If Cn
i ðSÞ ¼ 0 then S has a strongly

singular point.

Proof. Let fMjgyj¼1 be a sequence of sets, each of cardinality n, such that

lim
j!y

lCcpðMjÞ ¼ 0:

Figure 3
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Then limj!y CcpðMjÞ is a singleton fqg, because the existence of two points in this
limit at distance e implies the existence of an arc in CcpðMjÞ of length larger than e=2
for all j large enough (because CcpðMjÞ is connected), which is impossible.

Moreover, limj!y Mj must also equal fqg. Indeed, assume this is not the case.
Then there exists a subsequence of fMjgyj¼1 converging to an m-point set M, where
mc n. Since lCcpðMÞ > 0 and Ccp is upper semicontinuous, the corresponding sub-
sequence of flCcpðMjÞgyj¼1 would not tend to 0, and a contradiction is obtained.

We assume that the total length L of Sq is greater than p and derive a contradic-
tion.

Let Ld be the length of the intrinsic circle cd of centre q and radius d > 0. By [1],
p. 383, we can choose d so small that cd is a closed Jordan curve. Take e > 0 such
that L > pþ 3e. Let abc be a planar triangle with lðabÞ ¼ d=2, Jabc ¼ ðp=2Þ � e

and Jacb > p=2. Set n ¼ lðbcÞ. Clearly, n < d=2.
Let KðBÞ be the curvature of the Borel set BHS. For the open disc Dd HS of

centre q and radius d,

KðDdÞ ¼ KðDdnfqgÞ þ ð2p� LÞ:

Here, KðDdnfqgÞ ! 0 as d ! 0. We choose d such that KðDdnfqgÞ < e. Thus,

KðDdÞ < eþ 2p� ðpþ 3eÞ ¼ p� 2e:

For j large enough, Mj HDn=2. Let qj; zj be points in Mj, respectively cd, closest to
each other. Also, choose q 0

j A Mjnfqjg. There exists a point z 0j A cd such that q 0
j lies on

a segment from qj to z 0j or there are two segments g1; g2 from qj to z 0j surrounding q 0
j

inside cd.
In the first case z 0j is closer to q 0

j than to qj. In the second, let Dj be the open con-
nected set containing q 0

j and having g1 U g2 as boundary. Since D j HDd,

KðDjÞcKðDdÞ < p� 2e:

By the Gauß–Bonnet theorem, the angle of Dj at q 0
j is less than p� 2e. Then at

least one of the two angles made by a segment qjq
0
j with g1 and g2 must be less than

ðp=2Þ � e. Let aj denote that angle.
Take the planar triangle a 0b 0c 0 with lða 0b 0Þ ¼ rðz 0j ; qjÞ, Ja 0b 0c 0 ¼ aj and lðb 0c 0Þ ¼

rðqj; q 0
j Þ. A quick comparison of the triangles abc and a 0b 0c 0, in which the in-

equalities

rðz 0j ; q 0
j Þd rðz 0j ; qÞ � rðq; q 0

j Þ > d� ðn=2Þ > d=2;

aj < ðp=2Þ � e and rðqj; q 0
j Þ < n hold, leads to Ja 0c 0b 0 > Jacb > p=2; therefore

lða 0c 0Þ < lða 0b 0Þ.
By considering the geodesic triangle z 0j qjq

0
j and the planar triangle a 0b 0c 0, Top-

onogov’s comparison theorem (hinge version) implies
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rðz 0j ; q 0
j Þ < lða 0c 0Þ < lða 0b 0Þ ¼ rðz 0j ; qjÞ:

Since, obviously, rðzj ; q 0
j Þd rðzj ; qjÞ, there must exist a point z�j A cd such that

rðz�j ; q 0
j Þ ¼ rðz�j ; qjÞ.

We found in this way a point of CcpðMjÞ on cd. On the other hand the midpoint
mj A CcpðMjÞ of a segment joining the two points of Mj closest to each other is at
distance less than n from q. Hence rðmj; z

�
j Þ > d� n > d=2. So, the arc in CcpðMjÞ

joining mj with z�j has length larger than d=2 for all large j, and a contradiction is
reached. r

It is easily verified that, if S is a convex polyhedral surface with a vertex x such that
the diameter of Sx is less than p=2, then Cn

i ðSÞ ¼ 0. This leads us to the following
conjecture.

Conjecture 3. If the diameter of Sx is less than p=2 for some point x A S, then

Cn
i ðSÞ ¼ 0.

Consider the standard sphere S2. Clearly, C
j
i ðS

2Þ ¼ C j
s ðS

2Þ ¼ jp ð j ¼ 2; 3Þ. For
any nd 3, we have Cn

i ðS
2Þ ¼ 3p. To see this it is enough to consider n points in some

small disc on S2 and arrange that their convex hull be a (spherical) triangle. How-
ever, determining Cn

i ðSÞ for other surfaces S is less easy.

Acknowledgement. We are very thankful to the referee, who remarked that changes to
previous versions of Theorems 5 and 6 had to be performed.
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