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Symmetry and the farthest point mapping on convex surfaces
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Abstract. Consider the mapping F associating to each point x of a convex surface the set of all
points at maximal intrinsic distance from x. We provide a large class of surfaces on which F is
single-valued and involutive. Moreover, we show that there are point-symmetric surfaces of
revolution with F single-valued but not involutive.
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Introduction

LetS be the space of all closed convex surfaces (i.e. boundaries of open bounded con-
vex sets) in the 3-dimensional Euclidean space, endowed with the usual Pompeiu–
Hausdor¤ metric.

Denote by Fx the set of farthest points from x (absolute maxima of the intrinsic
distance from x) and by F the farthest point mapping, i.e., the multivalued mapping
associating to x A S the set Fx.

Our results are related to a conjecture of Steinhaus saying that if on a convex sur-
face S the mapping F is single-valued and F � F ¼ idS (F is an involution) then the
surface is a sphere ([3], p. 44). This conjecture was disproved by the first author [10].
He constructed a large family R of convex surfaces with both axial and central
symmetry, on which F is single-valued and involutive (with Fx ¼ f�xg). Then the
following question naturally arose [10]. Is it true, for convex surfaces on which F is
single-valued, that F is involutive? Or is this at least true for point-symmetric convex
surfaces of revolution?

On the (point-symmetric) boundary K of a 1-times-1-times-2 box (recall the
Knuth–Kotani puzzle), the mapping F , even restricted to the vertex set, is not
single-valued. In this paper we see that suitable bounds on the curvature of S, or on
curvature and radius, guarantee the farthest point mapping to be a homeomorphism.
Nevertheless, the answer to the preceding questions will be shown to be negative.
We also extend the family R given in [10] to the family I of all convex surfaces of
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constant intrinsic radius, and we characterize the centrally symmetric surfaces which
verify Steinhaus’ conditions.

In the last years, several questions about farthest points proposed by H. Steinhaus
(see the chapter A35 of the book [3] by H. T. Croft, K. J. Falconer and R. K. Guy)
have been answered by the second author (see [12], [14], [15]).

It is now known, for example, that on any convex surface S, for almost all
points x A S (in the sense of measure), Fx contains a single point [15]. J. Rouyer
[7] showed that similar results hold true (in the framework of Riemannian geom-
etry) for surfaces which are homeomorphic to the 2-sphere, but not necessarily
convex.

1 Definitions and notation

For S A S and x; y A S, rðx; yÞ will be the geodesic (intrinsic) distance between x and
y, and rx the distance function from x: rxðyÞ ¼ rðx; yÞ.
Also, let Cx be the set of all points in S joined to x by at least two segments, i.e.

shortest paths, Mx be the set of all relative maxima for rx, and CðxÞ be the cut locus
of x, i.e., the set of all points y A S such that some segment from x to y is not extend-
able as a segment beyond y. Of course, Cx HCðxÞ and Mx HCðxÞ.

The 1-dimensional Hausdor¤ measure (length) of the set AHS is denoted by lA,
while cardA denotes its cardinality.

For x A S, let Tx denote the space of tangent directions at x; it can be regarded as a
closed curve, the intersection of the tangent cone at x with the 2-dimensional unit
sphere. Thus, lTx c 2p.

It is well-known that the mapping F is upper semicontinuous. We call F injective if
Fx VFy ¼ q for any pair of distinct points x; y A S. Also, we call F surjective if for
every point y A S there is some point x A S with y A Fx. When we say that F is bijec-
tive or a homeomorphism, we implicitly state that F is single-valued.

The union of two segments from x to some point y A S, which make an angle equal
to p at y, will be called a loop at x.

If s1, s2 are two segments with precisely one common endpoint a, thenJs1s2 de-
notes the angle between the tangent directions of s1 and s2 at a. For a0 b, ab means
the segment from a to b when that segment is unique or clearly identifiable from the
context.Jxyz meansJðxyÞðyzÞ.

A geodesic triangle in a Riemannian manifold or a convex surface is a collection of
three segments g1, g2, g3 such that gi, giþ1 have a common endpoint aiþ2 (the indices
are taken modulo 3). We shall denote the triangle by ðg1; g2; g3Þ or a1a2a3.

Let K denote the sectional curvature of a given Riemannian manifold, and MH the
simply connected 2-dimensional space of constant curvature H.

Put rxðAÞ ¼ infy AA rxðyÞ for AHS. For a point x A S, the intrinsic radius at x is
rxðFxÞ. The radius of S is defined by radS ¼ infx AS rxðFxÞ, its diameter is defined by
diamS ¼ supx AS rxðFxÞ and its injectivity radius by injS ¼ infx AS rxðCxÞ.

We denote by Dðx; eÞ the open disc around x of geodesic radius e.
Two segments s1, s2 with a common endpoint bifurcate if s1 V s2 includes a non-

degenerate arc but none of the two segments.
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2 Auxiliary results

The set S2 of all convex surfaces possessing some point x A S with disconnected Mx

is obviously of second Baire category in S. It was introduced by the second author in
[15], where he showed that, in the sense of Baire category, on most S A S2 there exist
a point x and a Jordan arc in CðxÞ containing infinitely many points of Mx.

Other properties of F were established in [11], where the following two lemmas are
proved.

Lemma 1. The mapping F is injective on any surface S A S without conical points, in
particular on any surface of class C1.

Lemma 2. Let S A S. If F is continuous then it is surjective. If F is surjective then Fx is

connected for each x A S.

The following two results were established in [12].

Lemma 3. For any surface S A S and any point x A S, each component of Fx is a point

or an arc.

Lemma 4. If S A S, x A S and y A Mx, then each arc in Ty of length p contains the

tangent direction of a segment from y to x. Thus, if lTy > p, then there are at least

two segments from x to y, and if S is di¤erentiable at y and there are only two seg-

ments from x to y then these have opposite tangent directions at y.

We shall make use of the next lemma, a proof of which can be found in [15] (see
also [13]).

Lemma 5. Let S A S, x A S and y; z A Cx. Let J be the arc joining y to z in Cx. If

u A Jnfy; zg is a relative minimum of rxjJ , then u is the midpoint of a loop L at x

and, except for the two subarcs of L from x to u, no segment connects x to u.

Moreover, we shall need the following classical relation of Clairaut (see, for exam-
ple, [4] p. 257).

Lemma 6. Let S be a surface of revolution. For a variable point x on a geodesic g of S,
denote by rx the distance from x to the axis of revolution, and by yx the angle made at x

by g with the meridian through x. Then rx sin yx is constant as x varies on g.

We shall also use the following results.

Lemma 7 ([10]). For an arbitrary point x on a closed convex surface S centrally sym-

metric about the origin, Fx ¼ f�xg if and only if Fy ¼ fxg for all y A Fx.

Lemma 8 ([1]). On any convex surface, segments do not bifurcate.
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Lemma 9 ([1]). If ab, bc are segments on S A S, and x A ab converges to b while xc

converges to bc, thenJaxc converges toJabc.

The following comparison theorem can be found, for example, in [1].

Lemma 10. Let S be a convex surface, ðg1; g2; g3ÞHS a geodesic triangle and ðg1; g2; g3Þ
a planar triangle with lgi ¼ lgi. Then

Jgigiþ1 cJgigiþ1 ði ¼ 1; 2; 3 mod 3Þ:

Toponogov’s well-known comparison theorem, reproduced here as Lemma 11, can
be found, for example, in [2].

Lemma 11. Let M be a complete manifold with KdH, and ðg1; g2; g3Þ a geodesic trian-
gle in M. If H > 0, suppose lgi c p=

ffiffiffiffiffi

H
p

for all i. Then there exists in MH a geodesic

triangle ðg1; g2; g3Þ such that lgi ¼ lgi and the corresponding angles satify Jgigiþ1 c

Jgigiþ1 ði ¼ 1; 2; 3Þ.
If the inequality K cH is assumed, then the inequalities Jgigiþ1 dJgigiþ1 hold

ði ¼ 1; 2; 3Þ.

We shall also use Pogorelov’s rigidity theorem ([6] p. 167):

Lemma 12. Any two isometric convex surfaces are congruent.

The following is folklore.

Lemma 13. The orthogonal projection of any arc outside a compact convex surface

onto the surface is not longer than the arc itself.

3 Surfaces with F a homeomorphism, but not an involution

The classical Sphere Theorem (see [2], [9], or [5]) gives su‰cient conditions for a com-
plete, simply connected manifold M with Gauß curvature K to be homeomorphic to
the unit sphere: 1=4 < K < 1. In fact, this 1/4-pinching of the curvature proves su‰-
cient for F to be a homeomorphism.

Theorem 1. Let S be a convex surface of class C2 with Gauß curvature Kd 1. If
radS > p=2 then F is a homeomorphism.

Proof. The injectivity of F follows from Lemma 1. The single-valuedness of F and its
surjectivity can in fact be found inside the proof of Theorem 3 in [5]. For the readers
convenience, we give here a short direct proof.

Suppose there exists x A S with cardFx > 1. Then choose two points y; z A Fx, an
arc J joining y to z in Cx and a relative minimum u A Jnfy; zg of rxjJ . By Lemma 5,
u is the midpoint of a loop L at x, so both subarcs of L from x to u are segments and
make the angle p at u.
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Let uy be a segment from u to y. Then one of the two angles determined by L and
uy is at most p=2. Consider the triangle xuyHS containing that angle, and a triangle
xuyHM1 isometric to xuy.

Comparing the triangles xuy and xuy, by Lemma 11, we haveJxuyc p=2. Since
lxy ¼ rðx; yÞd radS > p=2, y lies in the open half-sphere of M1 opposite to x.
Then, the inequality lxuc lxy impliesJxuy > p=2, and a contradiction is obtained.
Thus, F is single-valued on S and therefore continuous. By Lemma 2, F is also sur-
jective.

Since S is compact and F is bijective and continuous, its inverse is also con-
tinuous. r

Remark 1. After rescaling, Theorem 1 says that, if S A S, Kd k0 > 0 and radS >
p=ð2

ffiffiffi

k
p

0Þ, then F is a homeomorphism.

Corollary. If 1=4cK < 1 then F is a homeomorphism.

Proof. By Klingenberg’s inequality in [2], p. 98, K < 1 implies injS > p, whence
radS > p. Thus, by Remark 1 with k0 ¼ 1=4, Kd 1=4 implies that F is a homeo-
morphism. r

Remark 2. The corollary says that, if S A S2 has everywhere positive Gauß curvature
and Kmin, Kmax denote its minimum and maximum respectively, then Kmax d 4Kmin.
The converse is, however, false, as we can easily see on some surfaces in the class R
defined in [10].

We treat now a special case, which will give the answer to the problem mentioned
in the Introduction. We consider surfaces S of class C2 which are of revolution about
the axis W ¼ oZ and symmetric with respect to the origin o of the space. The equator
Q is the intersection of S with the plane through o orthogonal to W. A meridian is the
intersection of S with a plane including W.

Denote by N the set of all surfaces S satisfying the following conditions.

i) The curvature K is pinched, 1=4cK < 1, with the minimum 1/4 attained on Q.

ii) The radius of Q is less than
ffiffiffi

3
p

.

iii) The surface S surrounds the sphere S of equator Q and S VS ¼ Q.

We observe that N contains the ellipsoids of revolution with semiaxes
ffiffiffi

2
p

< a ¼
b < cc 2.

Theorem 2. On any surface in N, the mapping F is a homeomorphism but not an invo-

lution.

Proof. Since the Gauß curvature on S verifies 1=4cK < 1, F is a homeomorphism
of S, by the previous corollary. It remains to prove that F � F 0 idE .

Clearly, by symmetry, x and Fx are on the same meridian, for any point x A S. Let
y A Q, and let x A Snfyg lie on the same meridian. If x is close enough to y, then
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there is a unique segment xy joining x to y. We show that, for rðx; yÞ small enough,
Fx 0 f�xg. This will imply, by Lemma 7, that F is not an involution.

First remark that, by Lemma 13, any meridian is longer than the equator (in case
of equality, S ¼ S), and Q is a geodesic of S.

Now, assume Fx ¼ f�xg. Clearly, any segment s from x to �x intersects Q. The
existence of two such intersection points, would contradict Lemma 8. Thus, sVQ is
a single point. No segment s (from x to �x) can lie on a meridian M, for x close
enough to y, because M is longer than Q. By Lemma 4, some segment s from x to
�x makes an angle ad p=2 with xy. Let z be the equatorial point of s.

Case a ¼ p=2: In this case, by Lemma 6, s is horizontal at �x, and the symmetry
of the whole geodesic GI s with respect to the line oz implies that z is the midpoint
of s. Since the curvature of S along Q is K ¼ 1=4, in a whole neighbourhood N of Q,
Kc 1=3. Because s converges to a half-equator if x tends to y, s lies in N if xy is
short enough.

Therefore, on the sphere M1=3 of radius
ffiffiffi

3
p

, the triangle xyz isometric to xyz has
its angles at x and y not smaller than p=2, by Lemma 11. On M1=3 this implies, x,
y being close, that rðy; zÞ is at least a quarter of the circumference 2p

ffiffiffi

3
p

, i.e.,
rðy; zÞd p

ffiffiffi

3
p

=2, in contradiction with rðy; zÞ ¼ pa=2 < p
ffiffiffi

3
p

=2, where a is the radius
of S.

Case a > p=2: Now s has some point x 0 0 x as a farthest point from Q. Let y 0 be
the equatorial point closest to x 0. By Lemma 6 and by the symmetry of S and of G,
there is a unique point x 00 A s between x and z at distance rðx; yÞ from Q, and the
point �x is either symmetric to x or to x 00 with respect to the line oz. In the first case
rðz; y 0Þ < pa=2. In the second, G reaches �x 0 beyond �x, rð�x;�x 0Þ ¼ rðx 00; x 0Þ ¼
rðx; x 0Þ, and rðz; y 0Þ ¼ pa=2.

We obtain the geodesic triangle x 0y 0z, to which we apply the argument from the
previous case, and obtain a contradiction. r

4 Surfaces with involutive F

Denote by H the subset of S of all convex surfaces which satisfy the conditions
in Steinhaus’ conjecture mentioned in the Introduction: F is single-valued and an
involution.

In [10] the first author constructed a class RHH of convex surfaces larger than
that of all 2-spheres, thus disproving the mentioned conjecture, and asked for a char-
acterization of H.

Here we find an even larger family of examples of surfaces in H, namely the family
I of all surfaces S A S of constant intrinsic radius, i.e.,

I ¼ fS A S : radS ¼ diamSg:

The relationship between R, I and H is not obvious. It is described by the next
theorem.

Theorem 3. We have RHIHH, where the first inclusion is strict.
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Proof. We show that IHH.
Let S A I. Notice that rxðFxÞ ¼ diamS for all x A S. Therefore, for any points

x A S, y A Fx, we have x A Fy, which implies that F is surjective. By Lemma 2, for
every x A S the set Fx is connected, and by Lemma 3 it must be an arc or a point.
Clearly, F is involutive if it is single-valued.

We claim that Fx actually reduces to a point for all x A S. Suppose there is a point
x A S with Fx a nondegenerate arc. By Lemma 1, x is a conical point.

Let z1, z2 be the endpoints of Fx. Denote by DHS the maximal open connected set
not meeting any segment from x to z1 or z2, but meeting Fx, and by S1, S2 the two
components of SnD with zi A bdSi ði ¼ 1; 2Þ. Let a, b be the two angles of D at x,
and gi the angle of Si at x ði ¼ 1; 2Þ. Since DUSi meets no segment from x to zi, by
Lemma 4, gi þ aþ bc p.

For any v A Fxnfz1; z2g, there is a loop Lv at x through v, by Lemma 5. Since limits
of segments are also segments, the same is true for v A fz1; z2g. So, for any v A Fx,
denote by sv, s

0
v the two segments from x to v forming Lv, and by diðvÞ the angle of

sv, s
0
v at x toward Si. Since d1ðz1Þ ¼ g1 and d1ðz2Þ ¼ g1 þ aþ b, there is some point

z A Fx such that

diðzÞ ¼ gi þ ni;

where ni > 0, n1 þ n2 ¼ aþ b, and gi þ ni 0 p=2 ði ¼ 1; 2Þ. Let j < p=2 satisfy
j > diðzÞ if diðzÞ < p=2 and

j > maxfdiðzÞ=2; p� diðzÞg

if diðzÞ > p=2.
Let now e > 0 be such that the planar triangle with one side of length e, another

side of length radS=2 and the angle between them j, is obtuse.
By the semicontinuity of F , if y A sz is close enough to z, then Fy HDðx; eÞ. Let

D1, D2 be the two components of Dðx; eÞnLz, and E1, E2 the two components of
SnLz satisfying Di HEi ði ¼ 1; 2Þ. Let y� A sz have maximal distance to y in E1.
This maximal distance is less than diamS. Indeed, let y 0 be the point of s 0

z at dis-
tance rðy; zÞ from x. Clearly, yxU xy 0 is not a segment, x being a conical point, so
rðy; y 0Þ < diamS. Also, any other point of Lz is at distance less than diamS from y,
whence Fy VLz ¼ q.

It is easily seen that there is at least one segment m1 from y to y� such that
Jm1y

�xc p=2, and at least one segment m2 from y to y� such that Jm2y
�xd p=2.

Indeed, suppose there is no segment of at least one of the two kinds, for instance of
the first kind. Then, for w A y�x converging to y�, any segment from y to w necessar-
ily converges to yy�. So, by Lemma 9,

Jywy� ! p�Jm1y
�x < p=2:

Comparing with the planar triangle whose vertex set is isometric to fy;w; y�g, we get
by Lemma 10 the inequality rðy;wÞ > rðy; y�Þ, which is false.
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Now let y ! z. Consequently, y� ! x. Since there is no segment from x to z

besides sz, s
0
z, we have m1 ! sz and m2 ! s 0

z. Suppose no segment from y to y� is
included in Lz. Then, still, for y close enough to z, m2 meets Fx, say at z 0. Then

2rðx; z 0Þc rðx; yÞ þ lm2 þ rðy�; xÞ < lLz ¼ 2 radS;

which is false. Hence, m2 ¼ yzU zy�.
There are two possibilities for Fy to meet D1. Let u A Fy VD1.

Case 1. u lies in the digon of sides m1, m2.

Case 2. u lies in the triangle ðm1; y�x; xyÞ.

In the following discussion we assume for both cases that d1ðzÞ > p=2. (The con-
trary situation can be treated analogously and is simpler.)

In Case 1, some triangle yy�u has its angle at y� not larger than Jzy�m1=2 and
therefore less than j for y close enough to z, because Jzy�m1 ! d1ðzÞ by Lemma
9. Looking at the Euclidean triangle with vertex set isometric to fy; y�; ug, we get
rðy; uÞ < rðy; y�Þ by Lemma 10; this contradicts u A Fy.

In Case 2, the triangle yy�x either has its angle at y� less than j, or its angle at x
less than j, for y close enough to z. In the first situation, the triangle yy�u has its
angle at y� less than j, hence, as before, rðy; uÞ < rðy; y�Þ, and a contradiction is
obtained. In the second situation, the triangle yux has its angle at x less than j,
whence rðy; uÞ < rðy; xÞ, again a contradiction.

Thus Fy does not meet D1. Analogously, it does not meet D2. Since we showed that
Fy does not meet Lz either, we found that Fy VDðx; eÞ ¼ q, and a final contradiction
is obtained. The proof is almost finished.

From Theorem 9 and Remark 10 of [10], it follows that RHI. J. Rouyer [8]
showed that this inclusion is strict. He proved that the boundary of a half-ball be-
longs to InR. r

For a given convex surface S, endow the space PðSÞ of all compact subsets of S
with the induced Pompeiu–Hausdor¤ metric Hr.

Theorem 4. The surface S A S is a centrally symmetric surface in H if and only if the

associated mapping F is an isometry.

Proof. Let S A H be centrally symmetric about the origin. By Lemma 7, Fx ¼ f�xg
for all x A S, hence F is the restriction to S of the symmetry with respect to the origin,
and therefore an isometry of S.

Conversely, if there is a point x A S with cardFx > 1, then we can find a sequence
xn tending to x such that cardFxn ¼ 1, and Fxn converges to a point z A Fx (see Theo-
rem 5 in [14]). In this case, we have rðxn; xÞ ! 0 and HrðFxn ;FxÞ ! Hrðfzg;FxÞ > 0.
Thus, F is an isometry between the metric spaces ðS; rÞ and ðPðSÞ;HrÞ if and only if
it is single-valued and an isometry of ðS; rÞ. So, let F be such a mapping.

From rðx;FxÞ ¼ rðFx;FFx
Þ, it follows that FFx

¼ x, hence S A H. By Pogorelov’s
rigidity theorem (Lemma 12), the isometric convex surfaces S and FðSÞ are congru-

Costin Vı̂lcu and Tudor Zamfirescu352

(AutoPDF V7 11/1/06 10:44) WDG (170�240mm) TMaths J-1445 Adv. in Geom. 6:2 PMU:I(CKN[V])10/1/2006 pp. 345–353 1445_6-2_11 (p. 352)



ent via an extension f of the isometry F to the whole space. Since f leaves S invari-
ant and has no fixed points on S, it must be the symmetry with respect to the mid-
point of some line-segment joining a point x to its (unique) farthest point. r
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