## J. I. ITOH - Y. TANOUE - T. ZAMFIRESCU

# TETRAHEDRA PASSING THROUGH A CIRCULAR OR SQUARE HOLE

#### Estratto



Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II - Numero 77 - Anno 2006

V INTERNATIONAL CONFERENCE OF STOCHASTIC GEOMETRY, CONVEX BODIES, EMPIRICAL MEASURES & APPLICATIONS TO ENGINEERING, MEDICAL AND EARTH SCIENCES

MONDELLO (PALERMO), 6-11 SETTEMBRE 2004

<u>DIREZIONE E REDAZIONE</u> VIA ARCHIRAFI, 34 - PALERMO (ITALY)

# TETRAHEDRA PASSING THROUGH A CIRCULAR OR SQUARE HOLE

JIN-ICHI ITOH, YUICHI TANOUE and TUDOR ZAMFIRESCU<sup>†</sup>

**Abstract.** Suppose a plane in  $\mathbb{R}^3$  has a hole. In this paper we determine the smallest circular and the smallest square hole through which a regular tetrahedron of given size can pass.

MSC 2000: 52C99, 52A99

In [1] two of us looked for the shape of a convex hole H of diameter and width as small as possible such that the regular tetrahedron T of edge length 1 can pass through it. They found such a hole with diameter  $\sqrt{3}/2$ , the width of a face of T, and with width  $\sqrt{2}/2$ , the width of T.

In this paper we look for holes of given shape and as small as possible, allowing the moving tetrahedron T to pass through it. We successively treat the cases when the hole is a disk and a square. Eighty-five years ago, K. Zindler [3] already considered convex bodies moving through a circular hole. For a special polytope, an affine cube, he found surprisingly small holes allowing it to pass through. We shall see here that this is so for the tetrahedron T too.

Let  $p_1, p_2, p_3, p_4$  be the (variable) vertices of the regular tetrahedron T of edge-length 1 and of variable position in  $\mathbb{R}^3$ , and  $P \subset \mathbb{R}^3$  the plane which will contain the hole.

**Theorem A.** Assume that the hole  $H \subset P$  is a disk. The smallest diameter of H such that T can pass through H is

$$\frac{t_0^2 - t_0 + 1}{\sqrt{\frac{3}{4}t_0^2 - t_0 + 1}} = 0.8957...,$$

<sup>\*</sup>Partially supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

<sup>&</sup>lt;sup>†</sup>Supported during his research stay at Kumamoto University in 2003 by DAAD, Germany, and JSPS, Japan.

where

$$t_0 = \frac{2 + \sqrt[3]{\sqrt{43} - 4} - \sqrt[3]{\sqrt{43} + 4}}{3}.$$

**Theorem B.** Assume that the hole  $H \subset P$  is a square. The smallest such hole allowing T to pass through it has diagonal length 1.

For the proof of Theorem A we need the following lemma.

**Lemma 1.** Let  $q_i(s) \in p_1p_i$  be at distance s from  $p_1$  (i = 2, 4). The diameter of the circle circumscribed to the triangle  $p_3q_2(s)q_4(t)$  is minimal precisely when  $s = t = t_0$ .

*Proof.* First we claim that if the radius r(s,t) of the circle circumscribed to the triangle  $p_3q_2(s)q_4(t)$  is minimal, then s=t.

Consider indeed  $s \neq t$ . By symmetry, the circles C', C'' circumscribed to  $p_3q_2(s)q_4(t)$  and  $p_3q_2(t)q_4(s)$  are congruent, and meet at  $p_3$  and at another point q on the plane through  $p_1$ ,  $p_3$ , and  $(p_2 + p_4)/2$ .

The circles C', C'' lie on the sphere determined by  $p_3$ ,  $q_2(s)$ ,  $q_2(t)$ ,  $q_4(s)$ ,  $q_4(t)$ . The plane P' through q and  $p_3$  parallel to  $p_2p_4$  intersects the sphere along a circle C. This circle meets the plane determined by  $p_1, p_2, p_4$  at two points which belong to the arcs  $q_2(s)q_2(t)$  and  $q_4(s)q_4(t)$  of the circle through  $q_2(s)$ ,  $q_2(t)$ ,  $q_4(s)$ ,  $q_4(t)$ .

Let  $\{q_i'\}=p_1p_i\cap P'\ (i=2,4)$ . The circle circumscribed to  $p_3q_2'q_4'$  is obviously smaller than C. The circle C is smaller than or congruent to the circles C',C'', with congruence if  $qp_3$  is a diameter of the sphere. Thus, r(s,t) is not minimal, and this proves our claim.

Now, direct calculation yields

$$||p_3 - q_i(t)|| = \sqrt{t^2 - t + 1}$$
  $(i = 2, 4)$ 

and, for the height  $h^*$  of  $p_3q_2(t)q_4(t)$  at  $p_3$ ,

$$h^* = \sqrt{\frac{3}{4}t^2 - t + 1}.$$

Hence

$$r(t,t) = \frac{\|p_3 - q_i\|^2}{2h^*} = \frac{t^2 - t + 1}{2\sqrt{\frac{3}{4}t^2 - t + 1}}.$$

The derivative of f(t) = r(t, t) is

$$f'(t) = \frac{3t^3 - 6t^2 + 7t - 2}{8\left(\frac{3}{4}t^2 - t + 1\right)\sqrt{\frac{3}{4}t^2 - t + 1}}.$$

It turns out that the equation  $3t^3 - 6t^2 + 7t - 2 = 0$  has the only solution  $t_0$  in the interval [0,1]. Hence  $f|_{[0,1]}$  takes its minimal value when  $t = t_0$ . This and the above claim imply that  $r|_{[0,1]\times[0,1]}$  has its unique minimum at  $(t_0,t_0)$ .

Proof of Theorem A. ¿From Lemma 1 it is clear that T cannot pass through a hole H with radius less than  $f(t_0)$ . Let  $H_0$  be the disk with radius  $f(t_0)$ .

Now we show how T passes through  $H_0$ .

Let  $q_{ij} \in p_i p_j$  be at distance  $t_0$  from  $p_i$ . We easily see that the circles  $q_{12}q_{14}q_{32}q_{34}$  and  $q_{21}q_{23}q_{41}q_{43}$  are congruent and lie in parallel planes. Their convex hull is a cylinder including all intersections of intermediate planes with T.

So the tetrahedron T passes through H starting with  $p_1$ , then puts its points  $q_{12}$ ,  $q_{14}$  on the boundary of H, rotates around  $q_{12}q_{14}$  - during this rotation the vertex  $p_3$  passes, by Lemma 1, through H - until  $q_{32}$ ,  $q_{34} \in P$ . Then a translation brings T in a position with the circle  $q_{12}q_{14}q_{32}q_{34}$  concentric with H. Another (orthogonal) translation makes the circle  $q_{21}q_{23}q_{41}q_{43}$  concentric with H. Then the moves are as before but in inverse order, and T escapes from H into the other half-space.

The Theorem in [2] shows that most convex bodies can be held by a circle. From Theorem A we now know more about the size of such a circle in case the convex body is a regular tetrahedron.

Corollary. The regular tetrahedron T of edge length 1 can be held precisely by the circles of diameter d satisfying

$$0.7071... = \frac{\sqrt{2}}{2} \le d < \frac{t_0^2 - t_0 + 1}{\sqrt{\frac{3}{4}t_0^2 - t_0 + 1}} = 0.8957...$$

To prove Theorem B we need the following lemmas.

$$\frac{3}{2}t - 1 + \sqrt{\frac{3}{4}t^2 - t + 1} \ge 0$$

is equivalent to  $t(2-\frac{3}{2}t) \ge 0$ , which is true in [0,1], we have there  $f'(t) \ge 0$  and f(0) = 1, whence  $f(t) \ge 1$  for all t.

So Lemma 2 is proven.

**Lemma 3.** With the same notation, the diameter of the smallest square including the triangle  $p_3q_2(s)q_4(t)$  is at least 1.

*Proof.* The smallest square  $\alpha\beta\gamma\delta$  including the triangle T(s,t) has (or can be translated to have) a common vertex with T(s,t). If  $\alpha=p_3$ , the conclusion follows from Lemma 2.

If  $\alpha = q_2(s)$ , then  $\|\alpha - \beta\| \ge h' \ge h''$ , where h' is the height of  $p_3q_2(s)q_4(t)$  at  $p_3$  and h'' is the height of T. So  $\|\alpha - \gamma\| \ge h''\sqrt{2} = \frac{2}{\sqrt{3}} > 1$ .

The third possibility  $\alpha=q_4(t)$  is analogous. Hence, in any case, the diameter of  $\alpha\beta\gamma\delta$  is at least 1.

Proof of Theorem B. Let H be the square hole with diameter 1.

Since the projection of T on a plane parallel to  $p_1p_4$  and  $p_2p_3$  is a square congruent to H, it is clear that T passes through H.

Now suppose that T passes through a square hole.

If T moves and arrives at the hole with two vertices simultaneously, then the diameter of the hole cannot be less than 1. If one vertex of T goes through the hole first, then – at the moment when the second vertex reaches the hole – we are in the situation of Lemma 3.

This ends the proof.

## References

- J. Itoh & T. Zamfirescu, Simplices passing through a hole, J. of Geometry, to appear.
- [2] T. Zamfirescu, How to hold a convex body? Geom. Dedicata, 54 (1995) 313-316.
- [3] K. Zindler, Über konvexe Gebilde, Monatsh. Math. Physik, 30 (1920) 87-102.

FACULTY OF EDUCATION
KUMAMOTO UNIVERSITY
KUMAMOTO 860-8555
JAPAN E-mail address: j-itoh@gpo.kumamoto-u.ac.jp

Кимамото Gakuen University Fuzoku High school ОЕ 2-5-1, Кимамото 862-0971 Јаран *E-mail address*: tanoue@kumagaku-h.ed.jp

Fachbereich Mathematik Universität Dortmund 44221 Dortmund Germany *E-mail address*: tzamfirescu@yahoo.com