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Abstract. We show that all critical points with respect to a point on a Riemannian surface lie
on a subset of the cut locus which is locally a tree and has relatively few endpoints. Moreover,
we o¤er some inequalities involving the length of the set of critical points.

Introduction

Let S be a compact Riemannian (2-dimensional) surface without boundary. For an
arbitrary point x A S we consider the Riemannian distance rxðyÞ from x to y A S and
the cut locus CðxÞ, defined as the set of all y A S such that no segment, i.e., shortest
path, from x to y can be extended as a segment beyond y.

The cut locus was introduced by H. Poincaré, [11]. Further basic properties of the
cut locus have been investigated by S. B. Myers [8], [9] and J. H. C. Whitehead [12],
and later by many other authors. Among other things, it is well-known that CðxÞ is
connected and locally a tree. For an introduction to the cut locus see, for example [7].

For any set which is locally a tree, a point in the set is called endpoint if its deletion
does not disconnect any connected neighbourhood (tree, if small) of the point. Let
EðxÞ denote the set of all endpoints of CðxÞ. A point y A S is called regular with re-
spect to x (and rx) if some open halfplane of TyS contains the tangent vectors at y of
all segments from y to x. A point y A S is called critical with respect to x (and rx) if
it is not regular, i.e., if for any tangent vector t at y there exists a segment from y to
x with direction s at y such that ht; sid 0 (see, for instance, [2], p. 2). For example,
every relative maximum of rx and every relative minimum of rxjCðxÞnEðxÞ is a critical

point. Let QðxÞ be the set of all critical points with respect to x. All these points lie on
CðxÞ.

We may encounter uncountably many critical points on one hand (to see this, take
the example in [13], p. 320, and modify it appropriately in order to obtain a Rie-
mannian surface) and, on the other, CðxÞ may be quite large, for example non-
triangulable (see Gluck and Singer [3]).

We point out in this paper that in fact QðxÞ cannot be too scattered in CðxÞ; more
precisely, it must belong to a single handsome tree in CðxÞ the number of endpoints
of which depends only on the positive curvature of S.



The case of a convex surface was treated in [16] without any di¤erentiability as-
sumptions.

Since every farthest point from x on S (an absolute maximum of rx ) is also critical,
we contribute here to a description H. Steinhaus had asked for (see [1]). For similar
work on farthest points in the case of convex surfaces, see [15].

On the number of terminal points

The following well-known result can be found, for instance, in [7].

Lemma. If the point y of CðxÞ is a relative minimum of rxjCðxÞnEðxÞ, then there are two

segments from x to y forming a closed geodesic arc at x, and there is no other segment

from x to y.

For a generalization to Alexandrov spaces, see [14].
Let Sþ HS be the subset of those points z in S where the Gaußian curvature KðzÞ

is positive and put, for any Borel set BHS,

KðBÞ ¼
ð
B

K ds; KþðBÞ ¼
ð
BVSþ

K ds; k ¼ KþðSÞ:

We shall prove the following result.

Theorem 1. All critical points of the surface S with respect to x A S belong to some set

which is locally a tree, lies in CðxÞ and has less than k=p endpoints.

Proof. As usual, dre denotes the smallest integer larger or equal to r A R.
Consider the union U of all Jordan arcs in CðxÞ joining critical points. Obviously,

all endpoints of U are in QðxÞ. It will su‰ce to show that this set U has less than
dk=pe endpoints.

Assume, on the contrary, that we can find dk=pe points among the endpoints of U .
Let y be one of these dk=pe points. By the definition of a critical point, from x to y

there must either exist

(i) two segments with opposite directions at y, or else

(ii) three segments whose directions at y enclose the origin in the interior of their
convex hull (in the tangent plane).

Only one, say D, of the domains (i.e., open connected sets) into which these two or
three segments divide S meets U . Indeed, the contrary assumption together with the
fact that U is connected but y is an endpoint of U implies the existence of a point of
U di¤erent from x and y on one of these segments, and a contradiction is obtained.

Let s1; s2 be the segments bounding D and let ax, ay be the angles towards SnD
determined by s1 and s2 at x, respectively y. Then D contains all cycles of CðxÞ (if
any) and by the Gauß–Bonnet formula we have
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KðSnDÞ ¼ ax þ ay:

Clearly, ax > 0 (because s1 0 s2) and ay d p (indeed, in Case (i) above ay ¼ p and, in
Case (ii), ay > p).

For each of the dk=pe critical points we obtain a domain analogous to D; let
D1;D2; . . . ;Ddk=pe be these domains. The sets SnDi ði ¼ 1; . . . ; dk=peÞ have pairwise
disjoint interiors because the two segments bounding Di join x with a critical point
which is not in SnDj ði0 jÞ, and no pair of these segments cross each other. Thus,
letting

M ¼ 6
dk=pe

i¼1

ðSnDiÞ;

we have

KðMÞ ¼
Xdk=pe
i¼1

KðSnDiÞ > dk=pepd k:

However, this contradicts KðMÞcKþðMÞc k. Hence U has at most dk=pe � 1
endpoints, q.e.d.

We sketch the construction of examples showing that the bound in Theorem 1 is
sharp. To this end we use the non-di¤erentiable example presented in [16], p. 1402.

Take the surface of a regular tetrahedron abcd and approximate it by a Rieman-
nian surface S respecting the symmetries, such that the curvature of each region close
to a vertex be slightly larger than p. (Thus there must also exist points of negative
curvature.) The point of S corresponding to the midpoint m of ab certainly has five
critical points, four of them close to a, b, c, d and one close to the midpoint of cd. In
this case U has the first four critical points as endpoints, and k=p is slightly larger
than 4.

Take now a small ball B with centre in the interior of the facet abc and not collin-
ear with m and c, consider the set abcd U convðfmgUBÞ, and appropriately approxi-
mate (as before) its boundary by a Riemannian surface S 0. Then the point of S 0 cor-
responding to m has an additional critical point, endpoint of U , behind B, and k=p
is slightly larger than 5. Further examples are obtained by adding other balls with
centres in the interior of abc and in various directions as seen from m.

The endpoints of the set U from the preceding proof will be called terminal points
of x. Of course, every terminal point is critical. By Theorem 1, every point has less
than k=p terminal points.

Theorem 2. All critical points of the orientable surface S with respect to x A S belong to

some tree lying in CðxÞ and having less than k=p endpoints outside the cycles of CðxÞ.
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Proof. Consider the set U from the proof of Theorem 1 (which contains all cycles of
CðxÞ). Since S is orientable, if CðxÞ contains the cycle G then it must contain at least
one more cycle having with G a common branching point of CðxÞ. (The number of
cycles in CðxÞ is finite and depends on the genus of S.)

Each cycle must contain some point which is not critical. Indeed, suppose all
points of the cycle G are critical with respect to x. Then rx is constant on G. But
then each point y A G is a relative minimum of rjG. By the Lemma, there are two seg-
ments from x to y forming a closed geodesic arc starting and ending at x, and there is
no other segment from x to y. Since at every point of CðxÞ the number of branches of
the tree CðxÞVV—for a su‰ciently small neighbourhood V—equals the number of
segments from x, there are in our case precisely two branches of CðxÞ at y, and thus
y is not a branching point, and a contradiction is obtained.

Hence we can choose finitely many points in UnQðxÞ so that after their deletion
the resulting set U � remains connected but possesses no cycle. Consider the union of
all Jordan arcs in U � joining critical points. This is obviously a tree included in CðxÞ,
which includes QðxÞ. Its endpoints outside the cycles of CðxÞ coincide with the end-
points of U . By Theorem 1, there are less than k=p such endpoints.

In [4], J. Itoh introduced and studied the essential cut locus (compare with our set
U employed in Theorems 1 and 2). Also, knowing Theorem 2 of this paper from the
author, Itoh provided strengthened variants of it in [6].

For surfaces embedded in R3 the following concept is a generalization of convexity
from genus 0 to arbitrary genus. S has minimal positive curvature if k ¼ 4p. Of course,
a surface in R3 homeomorphic to S2 has minimal positive curvature if and only if it
is convex. Theorems 1 and 2 have the following immediate corollary.

Corollary 1. All critical points of the surface SHR3 of minimal positive curvature,
with respect to x A S, belong to some tree lying in CðxÞ and having at most 3 endpoints

outside the cycles of CðxÞ.
In particular, if S is convex, they belong to some tree lying in CðxÞ and having at

most 3 endpoints.

In the convex case, this also follows from Theorem 4 in [16]; by that theorem, if no
di¤erentiability of S is assumed there exists an exceptional case in which QðxÞ does
not belong to any tree with 3 endpoints (but to one with 4) lying in CðxÞ. The excep-
tional case is that of a tetrahedron with curvature p at every vertex.

On the measure of the set of critical points

Otsu and Shioya showed that the cut locus has 2-dimensional Hausdor¤ measure 0
on any Alexandrov surface [10]. But, on such surfaces, the length of the cut locus can
be infinite (see [5], [16]).

In our case of a compact Riemannian surface, the cut locus has dimension at most
1, and has finite length [5]. However this length may be very large. How large can the

Tudor Zamfirescu496



length of QðxÞ be? Let lA denote the length of A. Also, let rx denote the radius of S
at x, i.e., rx ¼ max y AS rxðyÞ, and put k ¼ minx AS KðxÞ.

Let LkðrÞ be the length of the intrinsic circle of radius r on the simply connected
Riemannian surface of constant curvature k.

Theorem 3. For any point x A S,

lQðxÞc LkðrxÞ
2

;

with strict inequality if S is orientable.

Proof. For any arc LHQðxÞ and any point y A L we have a loop at x with midpoint
y. Let y1, y2 be the endpoints of L. The loops at x through y1, y2 determine two
angles b 0

L, b 00
L at x. Let bL ¼ minfb 0

L; b
00
Lg. By Toponogov’s comparison theorem

(hinge version), lLc bLLkðrxÞ=2p.
If QðxÞ includes no cycle of CðxÞ, summing over all (pairwise disjoint) maximal

arcs LHQðxÞ gives

lQðxÞc
X
L

bLLkðrxÞ
2p

c
X
L

ðb 0
L þ b 00

LÞLkðrxÞ
4p

c
LkðrxÞ

2
;

since
P

Lðb
0
L þ b 00

LÞc 2p.
If QðxÞ does include an entire cycle of CðxÞ, this cycle equals CðxÞ (see the proof of

Theorem 2), so S is a projective plane and, analogously,

lQðxÞc LkðrxÞ
2

:

Assume now S is orientable and
P

Lðb
0
L þ b 00

LÞ ¼ 2p. Then there are only two angles
measuring b 0

L, b 00
L corresponding to a single arc L. Since S is orientable, the sides of

one of them cannot separate those of the other. So the loop at x through an endpoint
of L makes a non-zero angle at x of interior disjoint from the above two angles,
which yields

P
Lðb

0
L þ b 00

LÞ < 2p, in contradiction with our assumption.

It is interesting to note the following result concerning the set Fx of all absolute
maxima of rðxÞ in the convex case. Although Fx is usually much smaller than QðxÞ,
no better estimate can be obtained.

Corollary 2. For any point x on the convex surface S the following inequality holds:

lFx < prx:

This was essentially already proven in [13]. An example in [13], suitably modified,
shows that the above upper bound is best possible.
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If, however, x has 3 terminal points we expect a much lower upper bound for lFx.
This suggests a fruitful interplay with the previous section.

Suppose we know the number of terminal points of the point x A S. Then we can
be more precise concerning the length of QðxÞ.

Theorem 4. Let S be orientable. For any point x A S with qðxÞ terminal points, the fol-
lowing inequality holds:

lQðxÞ < ðk � pqðxÞÞLkðrxÞ
4p

:

Proof. Let y A QðxÞ be a terminal point of x. Like in the proof of Theorem 1 we find
a domain Dy with the union of two segments from x to y as boundary, such that
QðxÞnfygHDy and KðSnDyÞ > p.

Let D be the union of the sets SnDy, for all terminal points y of x. Then KðDÞ >
qðxÞp.

For any arc LHQðxÞ and any point y A L we have a loop at x with midpoint y.
Let y1, y2 be the endpoints of L. As in the proof of Theorem 3, the loops L1, L2 at
x through y1, y2 determine two angles b 0

L, b 00
L at x. Let FL be the component of

SnðL1 UL2Þ containing Lnfy1; y2g. Then KðFLÞ ¼ b 0
L þ b 00

L, and

bL ¼ minfb 0
L; b

00
LgcKðFLÞ=2:

By Toponogov’s theorem,

lLc
bLLk

2p
c

KðFLÞLkðrxÞ
4p

:

Summing over all maximal arcs LHQðxÞ, we get

lQðxÞc
X
L

KðFLÞLkðrxÞ
4p

¼ KðFÞLkðrxÞ
4p

;

where F ¼ 6
L
FL. Moreover,

KðFÞcKþðFÞc k � KþðDÞc k � KðDÞ < k � qðxÞp:

The inequality of the theorem now follows.

It is easily seen that Theorem 4 provides a smaller upper bound than Theorem 3 if
(and only if ) k < ðqðxÞ þ 2Þp.

Corollary 3. For every point x of the orientable surface S with qðxÞ ¼ dk=pe � 1,

lQðxÞ < LkðrxÞ
4

:

Tudor Zamfirescu498



In the special case of a surface of minimal positive curvature, we obtain the follow-
ing result.

Corollary 4. For every point x of an orientable surface of minimal positive curvature

with qðxÞ ¼ 3,

lQðxÞ < LkðrxÞ
4

:

Applied to convex surfaces, Corollary 4 yields the following non-trivial inequality.

Corollary 5. For every point x of the convex surface S with qðxÞ ¼ 3,

lQðxÞ < prx

2
:

To illustrate Corollary 5 we present the following example, which is itself not a
Riemannian surface, but a limit of such surfaces; our conclusions can easily be trans-
ferred to these.

Consider the equilateral triangle abc with centre o and circumradius 1. Also, con-
sider the point d symmetric to o with respect to the line ab, and the parabola of focal
point o and directrix bd. Let Pab be the closed convex set bounded by this parabola.
With Pab and the other 5 analogous convex sets we construct the compact convex set

K ¼ convðððPab VPacÞU ðPca VPcbÞU ðPbc VPbaÞÞV abcÞ:

This set is not strictly convex, having on each side of abc a line-segment the endpoints
of which trisect the side. Let a1 be the boundary point of K on oa, let a2 be the mid-
point of oa, and analogously consider the points b1, c1, b2, c2.

Let S be the doubly covered set K and let o 0 be the point corresponding to o, on the
other side of S. Then, on S, we have Cðo 0Þ ¼ a1oU b1oU c1o, Fo 0 ¼ fog, and Qðo 0Þ ¼
a1a2 U b1b2 U c1c2 U fog. Also, ro 0 ¼ 1, while

lQðo 0Þ ¼ 3lða1a2Þ ¼
3

2
ð

ffiffiffi
3

p
� 1Þ ¼ 1:098076 . . .

By Corollary 5,

lQðo 0Þ < p

2
¼ 1:570796 . . .

Thus, this example leaves open the question whether the bound in Corollary 5 is best
possible.
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