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Abstract. In this paper we investigate the acute triangulations of flat Mobius strips. We
find out that we can always triangulate a flat Mobius strip with at most nine acute triangles,
and sometimes (but not always) that many triangles are really needed.

1. Introduction

Historically, the investigation of acute triangulations has one of its origins in a problem
proposed by Goldberg in 1960 in the American Mathematical Monthly (E1406), which is
identical to a problem of Stover reported in the same year by Gardner in his Mathematical
Games section of the Scientific American (see [4] and [5]). The problem was to cut an
obtuse triangle into the least number of smaller triangles, all of them acute.

In the same year, independently, Burago and Zalgaller [2] treated in considerable
depth acute triangulations of polygonal complexes, being led to them by the problem
of their isometric embedding into R3. (It happens that, involuntarily, their paper also
includes a solution to Goldberg—Stover’s problem!)

In 1980 Cassidy and Lord [3] considered acute triangulations of the square. Recently,
Maehara investigated acute triangulations of quadrilaterals [9] and arbitrary polygons
[10], and Yuan improved the results on polygons [11].

A triangulation of a two-dimensional Alexandrov space with curvature bounded
below (see [1] for a definition) means a collection of (full) triangles covering the space,
such that the intersection of any two triangles is either empty or consists of a vertex or
of an edge. A triangle is called geodesic if all its edges are segments, i.e., shortest paths
between the corresponding vertices.
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Our interest is focused on triangulations that are acute, which means that all triangles
are geodesic and all angles involved are smaller than /2.

Acute triangulations of all Platonic surfaces, which are the surfaces of the five well-
known Platonic solids, were investigated in [6]—[8].

The following problem first raised in [6] is natural, and not easy.

Problem 1. Does there exist a number N such that every compact convex surface in
R? admits an acute triangulation with at most N triangles?

As remarked in [7], Problem 1 can be transfered to other families of Alexandrov
surfaces, with or without boundary.

Besides the platonic surfaces, other surfaces homeomorphic to the sphere have been
acutely triangulated: the double triangle by Zamfirescu [14], the double quadrilateral
by Yuan and Zamfirescu [13], and the double pentagon by Yuan [12]. We remark here
that Problem 1 for the family of all tetrahedral surfaces is surprisingly difficult, and still
open.

In this paper we consider acute triangulations of the family M of all flat Mobius
strips. These well-known non-oriented surfaces with boundary are locally isometric to
a planar disc or semidisc. We solve Problem 1 for this family M, and establish the best
possible corresponding bound N. We chose this family for our investigation because of
its importance among non-oriented surfaces, and because no non-oriented surfaces have
been considered so far.

Among flat surfaces, besides planar polygons, only the case of flat tori has been
mentioned (but not completely settled) so far [6].

Let R be a rectangle of sides 1 and « in the Euclidean plane R?. If we identify pairs
of points symmetric about the center of R and lying on the sides of length 1, we obtain
a flat Mobius strip, which will be denoted by M.

Let 7 be an acute triangulation of Mg. Let V (7) be the set of vertices of 7. A vertex
p € V(7) is called a side vertex if p lies on the boundary bd Mg of My, and an interior
vertex otherwise. A side edge of T is an edge of 7 lying in bd Mg. A transversal edge
of 7 is an edge which is not a side edge, but joins two side vertices of 7. Fora, b € Mk,
let ab denote a segment joining a to b, and let |ab| be the length of ab.

Now, let R = a;bjaxb, C R? with |la; — by|| = 1; then a; and a, (respectively, b;
and b,) are identical in Mg.

2. Partial Results

We shall see here that, in our constructions, the number of triangles in 7 is a decreasing

function of «. For large «, five triangles will suffice; for 1 < o < % we need eight
triangles, while for small « we need one more triangle.

In fact, we “need” eight or nine triangles in the sense that our constructions are made
this way. The proof that, for @ < 1, nine acute triangles are really needed will come only

in the last section.

Proposition 1. Ifo > % then My can be triangulated into five acute triangles, and
no smaller acute triangulation is possible.



Acute Triangulations of Flat Mobius Strips 673

[&5]

In f az

Fig. 1. o > /3.

Proof. Case 1: @ > /3. Let e,m € ayb, in R, such that ||b; — e|| = ||b, — e,
lla; — m|| = |la; — m]||. Clearly, e € relint a;m in R. Let f be the orthogonal projection
of e on bya, in R; then ||a; — f|| = ||a; —m||, which implies that Zmfa, < 7 /2. By our
construction, it is easy to check that the line-segments a; by, aie, bye, by f, em, ef , mb,,
may and fa, are all segments in Mg. Furthermore, since ||m — f|| = (Vo2 + 1)/a,
by — fll = llm — byl = (@® — 1)/2« and & > /3, we have ||m — f|| < |lm — by +
b1 — fIl < |lm—cz2||+|lci — f|l for any point ¢; € a;b; (c; and c; are identical), which
implies that the line-segment mf is also a segment in M. Since |may| = (o? + 1) /20,
we have |mf| < |may|, whence Zma, f < /3. Thus M can be triangulated into five
non-obtuse geodesic triangles, as shown in Fig. 1. Now we replace in this triangulation
the vertices f and a, by two vertices on the side edge fa,, close to f, respectively a,.
So we obtain an acute triangulation of My of size 5.

CaseZ:\/g <& < +/3.Lete; € ajbyin R, suchthat ||b; —e; || = ||b, — e ||. The Mobius
strip M, is the isosceles trapezoid e by e, b, C R?, as shown in Fig. 2, where e; coincides
with e, in M. Let f be the midpoint of the side edge e;b,, and let g, /1 € bie, in R? be
such that [le; — gl = llez — gll = b1 — hll = [[b2 — hl|. Since [|by — ezl — (161 — gl +
|h—esl]) = (3 —a?)/2a > 0, g € relint by h. From our construction, it is easy to check
that the line-segments bjey, e; f, e1g, b1 g, gh, fbs, byh, he, C R? are all segments in
Mg. Since || f — gl = (Woa* + 1002 + 9) /4a, || f — ball + lIby — gll = (5* — 3) /4a
and a > \/§ we have || f — gl < If —ball + 1161 — gll < IIf —ell + llea — gl
Let m; be the midpoint of e;b; C R? (i = 1,2). m, m, coincide in Mg. If ny € bym,,
then || f — ball + b1 — gll = I|f' = bull + 161 — gll < IIf" — nill + lIn1 — gll, where
f' = fin Mg (see Fig. 2). If n; € eymy, then || f —ei|| + [lex — gll = | f" — eall +
llex — gl < IIf" — nall + lIn2 — gll, where f” = f and ny = n; in Mg (see Fig.

Fig. 2. \/§§a<\/§.
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Fig. 3. 1<a<\/§.

2). Hence fg C R is a segment in Mg. Analogously, fh C R is also a segment in
M. Furthermore, since \/g <ua< \/5, we have tan %ngh =@3- az)/4a < 1 and

tan %4b1e1g = (a¢?> —1)/2a < 1. Thus, all triangles in Fig. 2 are acute. Hence we
obtained an acute triangulation of My with size 5.

Now let 7 be an arbitrary acute triangulation of Mg with ¢ triangles. We regard 7 as
a planar graph embedded on Mg. If 7 has at least one interior vertex, then clearly ¢ > 5.
If 7 has no interior vertex, then we assume that it has s side vertices. Notice that every
side vertex has degree at least 4, so s > 5. Now denote the number of edges of 7 by e.
Since 3t +5 =2¢ =} 1, d(x) > 4s, wehavet > 5 > 5.

The proof is complete. O

Proposition 2. If1 <« < %, then Mg can be triangulated into eight acute triangles.

Proof. Inside of R, let e, f be the midpoints of a,b;, a,b; respectively, and let m, n be
the two points such that both a;b;m and a,b,n are right isosceles triangles. Since & > 1,
these triangles are disjoint. Thus My is triangulated into eight non-obtuse triangles as
shown in Fig. 3. Now we can slightly slide m and n towards each other, such that all the
eight triangles become acute. a

Proposition 3. Ifa < 1, then Mg admits an acute triangulation with nine triangles.

Proof. There are two cases to consider.

Case l: ¢ < 1.In R, let m; € a;b; (i = 1, 2) be a point which is close to the midpoint
of a;b; and satisfies ||a; — m;|| < ||b; — m;|| (m,, m, are identical in My). Let [ denote
the perpendicular bisector of bb,. Let e, f € [ such that, in R, me, my f, bya, are
parallel. Clearly e and f are symmetric with respect to the center of R. Now, still in R,
let n € a;b; be a point close to b, such that ||n — m;|| < ||n — m;|| and nef is an acute
triangle. Since o < 1, we obtain a non-obtuse triangulation of M with size 9, as shown
in Fig. 4. Now, again in R2, we take the vertex f +¢e(a; — by) instead of f and the vertex
my + n(a; — by) instead of m,, with ¢ and n chosen so small that all triangles become
acute.

Case 2: o = 1. Let c; be the point on the side ba; of R such that ||b; — c1| = }1. The
Mobius strip is the isosceles trapezoid ajciazc, C R2, where ¢; and ¢, are identical in
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Fig.4. o < 1.

Mpg.Letm; (i = 1, 2) be the midpoint of a;c; (m; and m, are identical in My) and let f
be the midpoint of c;c; (in R?). Now denote by n the orthogonal projection of f ona;c;
(in R?). For arbitrary points a, b, ¢ € R?, let[¢, denote the line passing through the point

¢ and perpendicular to ab. Suppose that /%, N lg:n = {e}. Thus, My admits a geodesic
triangulation with size 9, as shown in Fig. 5. Clearly, the triangles ¢ fa,, fa,m, and
nmyc, are acute. We may assume that ¢; = 0, cja, is the x-axis and 151‘“2 is the y-axis.
Denote by p the orthogonal projection of f on c;n. By elementary calculations, we
establish that p = (%, %) and e = (%, %), which implies that both angles nef and

cief are acute. Furthermore, it is easy to check that

262 +2-197 102 3
48? T

2 2 2
lare|” + |en|” = = lan|,

and hence the angle a;en is acute. Now, we first replace f by f' = f + e(b; — ap) for
small g, such that the angle nf'm, becomes acute, and c; f’ is still a segment. Then we
replace my by m5 = m, + n(m; — e) with a small 7, such that both angles a;m}e and
cymje become acute. O

3. Main Result

Theorem. Any flat Mébius strip can be triangulated with at most nine acute triangles,
and this is the best possible bound.

Ty L]

L - -
n ] i)

Fig.5. o= 1.
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Proof. Propositions 1-3 imply the first part of the statement. Now we shall show that,
if &« < 1, at least nine triangles are indeed needed for any acute triangulation.

Let 7 be an acute triangulation of a Mdbius strip Mg with @ < 1, having i interior
vertices, s side vertices and ¢ triangles. Trivially s > 3. Since o < 1, there is no
transversal edge in 7. Hence i > 1.

If i = 1, then s > 5. Since each side vertex has degree at least 4, there must be at
least one transversal edge emanating from it, which is impossible.

Ifi = 2, then s > 4. If s = 4, then both interior vertices have degree 5, and all side
vertices have degree 4. So we have 3t + 4 = 2e = 26, which is impossible. If s > 5,
then by 37 + s = 2e¢ > 10 + 45 we have 3t > 10 + 35 > 25, whence t > 9.

If i = 3 and s = 3, then all the vertices of 7 have degree 5. So 3t + 3 = 2¢ = 30
and thus ¢t = 9.

Ifi =3 and s > 4, then 3r + s = 2e > 15 + 4s implies that 3t > 15 + 3s > 27 and
t>09.

Ifi > 4and s > 3, then from 3t + s = 2¢ > 5i + 4s we can conclude that
3t > 5i +3s > 29, whence t > 9. O
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