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Antipodal trees and mutually critical points on surfaces

Tudor Zamfirescu™

(Communicated by K. Strambach)

Abstract. To any point on an Alexandrov surface homeomorphic to the sphere one can associate a
minimal subtree of the cut locus containing all farthest points. It is called the antipodal tree.

Two points of a compact orientable Alexandrov surface are called mutually critical if each of
them is critical with respect to the other. All points which are mutually critical with a given point
form a set. In this paper we show that this set, as well as the set of endpoints of any antipodal tree,
are finite.
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Introduction

Let us recall the definition of an Alexandrov space (with curvature bounded below). If
a, b, ¢ belong to the metric space (A, p), let Z*abc denote the angle of the geodesic tri-
angle in Sy of side-lengths p(a, b), p(b, ¢), p(c, a), opposite to the side of length p(c, a),
where Sy denotes the 2-dimensional complete simply-connected Riemannian manifold of
constant curvature k£ < 0 (a Lobachevskii plane).

Here, an Alexandrov space is a complete metric space (A, p) such that any pair of
points in A admits a midpoint (so, the metric is intrinsic), and every point of A has a
neighbourhood in which, for any four distinct points a, b, ¢, d, we have

/*bac + /*cad + /Fdab < 2.

The original definition in [2] is slightly more general, not assuming completeness of
(A, p)-

Burago, Gromov and Perelman [2] also introduced and investigated the notion of di-
mension in Alexandrov spaces. Any 2-dimensional Alexandrov space is a topological
2-manifold. If nothing else is specified, this is the meaning of a surface.

*Work started in 2004 during a research stay at MSRI, Berkeley, California, the generous support of which
is thankfully acknowledged.
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Let S be a surface (with intrinsic metric p). For an arbitrary point € S we consider
the distance function p,(y) = p(z,y) from x to y € S and the cut locus C(z), defined
asthe setof all y € S\ {«} such that no segment, i.e., shortest path, from z to y can be
extended as a segment beyond y.

The notion of a cut locus was first considered by H. Poincaré [7] in 1905. Among other
things, it is known that (on a surface) the cut locus is locally a tree. For an introduction to
the cut locus see for example [5]. A detailed description of the cut locus on surfaces was
given by Shiohama and Tanaka [8].

A point of a tree is called endpoint if its deletion does not disconnect the tree. A tree
is finite if it has finitely many endpoints.

Several interesting sets associated to z lie in the cut locus C(x). For example, the set
Q(z) of all critical points with respect to = and p,. Among these, of special importance
for the global investigation of a surface S is the set F, of all absolute maxima of p,.
However, other interesting sets of critical points, like the set M, of all relative maxima of
Px, have also been considered.

Let o, 7 be segments on S with a common endpoint z, and take s € o, t € 7. Then
the angle of o, 7 at z is denoted by Loz, or simply by ZoT if o and 7 have no other
common endpoint. The same angle is also denoted by Zsat if it is clear from the context
that the involved segments from x to s and ¢ are along o and T, respectively.

A point y € S is called critical with respect to x (and p,) if for any direction § at y
there exists a segment from y to z making with  an angle at y not larger than /2 (see,
for instance, [3], p. 2).

If the surface S is homeomorphic to S2, then every cut locus is a tree. For z € S,
the minimal subtree of C'(x) containing F, is then called the antipodal tree of x. Notice
that this term has been defined differently in [14]; now we prefer this meaning. We may
encounter uncountable sets F, on one hand (see [12], p. 320) and, on the other, C(z) may
be quite large, even residual in S [11].

We pointed out in [15] that in fact Q(x) cannot be too scattered in C(z) if S is a
Riemannian surface; more precisely, if .S is orientable, it must belong to a single finite
tree in C'(z) the number of endpoints of which depends on the positive GauB curvature
and on the genus of S.

The case of a convex surface was treated in [14] without any differentiability assump-
tions. It was found that () always lies in a subtree of C(x) with at most 4 endpoints.
About F7, still in the convex case, we showed in [13] that every antipodal tree is a Jordan
arc or a point.

We will show here that, on any surface homeomorphic to S2, the antipodal trees are
finite. This is a contribution to the description of F, for which H. Steinhaus has asked
(see [4]).

For any compact surface S, let diamS denote the largest value of p(z,y) as = and
y run through S. Two points realizing diamS are called diametrically opposite to each
other. There might be no point diametrically opposite to some point z € S, but there
might also be several points diametrically opposite to z. The set of all of them is called
the diametrically opposite set of x. When it is not empty, this set equals F.

In fact, the set F, itself can be a Jordan arc: consider a doubly covered half-disc. We
shall show that this is not possible on smooth orientable surfaces, if Fy, is a diametrically
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opposite set. More precisely, F;, must then be finite. Moreover, we shall extend this result
to any set of points y, each of which is mutually critical with x, i.e., y is critical with
respect to x, and vice-versa.

A geodesic triangle is a triangle with segments as sides.

If z € S, then the space X, of directions at z is known to have length at most 27 (see
[2], p. 23). If X, has length 27 for all z € S, we call S smooth. Note that, for example
when S is convex, smoothness excludes no singular points except the conical ones, so it
admits non-C! surfaces.

Antipodal trees

The following lemma is the 2-dimensional case of a generalized form of Toponogov’s
comparison theorem (see [2], p. 7). We associate here Pizzetti’s name to it, too, because
for (smooth) surfaces it was Pizzetti who gave it first, in a series of papers at the beginning
of the last century (see [6]).

Lemma 1 (Pizzetti—-Toponogov). For any geodesic triangle abc in S,
/*abe < ZLabe, /Fbea < Lbca, £Feab < Lcab.

The following lemma is well-known in various contexts. For surfaces of class E;
see [9].

Lemma 2 (Lemma 9 in [10]). For any x € S, we have M, C Q..

We use these lemmas to prove our first result.

Theorem 1. Any antipodal tree on a surface homeomorphic to S? is finite.

Proof. Suppose the antipodal tree T, of = has an infinite set F of endpoints. Select a
convergent subsequence {y,}>>; with y, € E and y, — y. Clearly, E C F, and
y € T,. Let Y, be the union of all segments from z to y,,, and D,, the component of
S\ Y,, containing 77 \ {y» }. Let o, o/, be the (possibly coinciding) segments from z to
Y, lying in bd D,,, and «, the angle at y,, between o, and o, towards D,,.

Take the points @', yy,,y,, € Sk satisfying p'(z',y,) = p(@,yn), p'(&'45) =
p(z,ym) and o' (Y4, Yi) = P(Yn,Ym), where p is the (standard) metric of Si. Then
the triangle z'y/,y., is isosceles and Zz'y. y., — 7/2 as n,m — oo.

Let 7,,,,, be a segment from y,, to y,,,. By Pizzetti-Toponogov’s comparison theorem
(our Lemma 1), for arbitrary € > 0, Z0pTnm > (7/2) — € and Lo, Tnm > (70/2) — € if
n, m are large enough. Similarly, if 7,, is a segment from y,, to y, then Zo, 7, > (7/2)—¢
and Lo/, 7, > (7/2) — € for n large enough.

By Lemma 2, ¥, is a critical point with respect to z, so o, < m. Now,

O = LT Lo Ty =L T Lo T
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Also, Zop Ty < (m/2)+¢, otherwise £o), Ty, = @, — £0,Tn, < ™ — € and a contradiction
is obtained. Similarly, Zo,, Tpm < (7/2) + €.
It follows that £ 7, Ty, < 2¢. Thus, in the triangle Y, Y Yk, for large indices n, m, k,
we have
LYnUnll < LT Tvin + LTnTak < 4¢.

Analogously, both other angles of the triangle ¥,y vx are less than 4¢. But the sum
of the angles of the triangle on Sy, with the same side-lengths as v,%,,yx tends to 7 as
n,m,k — co. By Lemma 1, the sum of the angles of ¥, ., yx exceeds m — ¢ for indices
large enough, which contradicts for small £ the previous findings.

Mutually critical points
We start with another lemma from [2].

Lemma 3 ([2], p. 6). Let a,, — a, b, — b, ¢,, — c on the surface S. Then
liminf Za,b,c, > Zabc.

We have seen in the preceding section that the antipodal tree T, of x € S must be
finite if .S’ is homeomorphic to a sphere. But F,, does not need to be a finite set, even in
the convex case. It must, however, be finite if it is a diametrically opposite set and S is
smooth, as we shall see.

Theorem 2. Let S be a smooth orientable surface and x € S. Then the set of all points
in S mutually critical with x is finite.

Proof. Suppose the point z has an infinite set Y of points mutually critical with z. Then
we may choose a convergent sequence of such points, y,, — y, where y € Y too, because
Y is closed. (This follows from Lemma 3.)

Since z € Q(yy), there are three segments from z to y,, making pairwise at T angles
which are less than 7 but sum up to 27, or there are two segments from z to y,, making
at z the angle 7. Since y, € Q(z), there also exist three segments from z to y,, making
pairwise at y,, angles less than 7 summing up to 27, or there exist two segments from
to y,, making at z the angle 7.

Let F be the set of all segments which are limits of segments from z to ,,.

First suppose that there are three distinct limit segments o', o2, 0 from z to y in F.
Let crfl be segments from z to y,, such that 0%, — ¢* (i = 1,2, 3). There are three sectors
of S, locally at y, determined by 0!, 0%, o3. Again for a subsequence of indices, y,, lies
in one of these sectors, say determined by o', o2. But 03 — 03, whence o3 necessarily
crosses 01 U oy for large n, which is impossible.

Now suppose that F contains precisely two limit segments o, 02. In this case, the
above angle conditions imply that 0%, 0 make the angle 7 at 2. Let o, be an arbitrary
segment from z to y,,. Take a tubular neighbourhood N of o' U o2. For {0,}32 , the
only possible limit segments are o and o2. So, for n large enough, o,, C N. Since S
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is orientable, N \ (¢! U 0?) is disconnected, whence, for each n, o, \ {2} lies on only
one side of ¢! U o2 locally at z. Hence this happens, for infinitely many indices, with
the same side. Let & be the direction at x orthogonal to o> U o® and pointing to the other
side of o U o2. Then the angle between § and o, is larger than 7/2, for infinitely many
indices and any choice of o,,. This contradicts z € Q(yx).

Corollary. Let S be a smooth orientable surface. Then the diametrically opposite set of
any point in S is finite.

This is an immediate consequence of Theorem 2. In particular, if S has genus 0, each
non-empty diametrically opposite set is single-valued [10], and, if S has genus 1, any
diametrically opposite set has at most 5 points [1].

The corollary cannot be extended to non-orientable surfaces, as the example of the
standard projective plane shows. Smoothness is equally necessary: consider the convex
hull of {(0,0)} U {(cos p,sin¢p) : 0 < ¢ < 1}, doubly covered.
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