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Minkowski’s theorem for arbitrary convex sets
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Abstract

V. Klee extended a well-known theorem of Minkowski to non-compact convex sets. We generalize
Minkowski’s theorem to convex sets which are not necessarily closed.
c© 2008 Published by Elsevier Ltd

By a classical theorem of Minkowski, every compact convex set is the convex hull of its set
of extreme points.

Our goal is to find a variant of Minkowski’s theorem having larger applicability than the
original version. Already Klee found such a variant allowing unbounded closed convex sets [2].
We shall extend the family of convex sets by relaxing the requirement that they are closed.

Let A be a convex set in Rd with non-empty interior.
We first reproduce from [3] the definition of a face. A convex subset F ⊂ A is called a face

of A if x, y ∈ A and (x + y)/2 ∈ F imply x, y ∈ F .
Thus, an extreme point of A is a face consisting of a single point. Similarly, an extreme ray of

A is a closed half-line which is a face of A. And A itself is also a face. Every point of A lies in
the interior int A of A or in a face distinct from A. Let ext A, extr A, and A denote the set of all
extreme points, the union of all extreme rays, and the closure of A, respectively.

If x ∈ A, the intersection of A with a closed half-space containing x is called a cap of x . For
V ⊂ Rd , conv V denotes the convex hull of V .

The following well-known result is due essentially to Steinitz [4] (see also [1]).

Lemma 1. If the convex set A is compact, any interior point of A belongs to the interior of the
convex hull of at most 2d extreme points of A.
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We shall also make use of the following result.

Lemma 2 ([3]). A point x ∈ A is an extreme point of A if and only if there exist caps of x of
arbitrarily small diameter.

Theorem 1. Let A be convex and bounded. Then conv ext A = A if and only if, for every face F
of A, ext F is dense in ext F.

This theorem strengthens Minkowski’s theorem because, if A is compact, every face F of A is
closed, and ext F = ext F .

Proof. First, suppose ext F is dense in ext F for every face F of A. We show that conv ext A =
A.

We use induction on the dimension d of A.
The statement is obvious for dimension 1: in this case A must be a closed line-segment, and

the conclusion is true.
Suppose dim A = d and assume the statement true for all dimensions less than d.
Consider any face F of A different from A. Then, by the induction hypothesis, conv ext F =

F . Since ext F ⊂ ext A, F ⊂ conv ext A.
It remains to show that int A ⊂ conv ext A.
Let a ∈ int A. We find finitely many (in fact we don’t need more than 2d by Lemma 1) points

a1, a2, . . . , ak in ext A such that

a ∈ intconv{a1, a2, . . . , ak}.

Now, clearly, if a′i ∈ ext A is chosen close enough to ai (i = 1, . . . , k), then

a ∈ intconv{a′1, a′2, . . . , a′k} ⊂ conv ext A.

Assume now that ext F is not dense in ext F for some face F . Then there is an extreme point
e of F and a neighbourhood N of e in aff F such that N ∩ ext F = ∅. By Lemma 2, there exists a
cap of e included in N . This prevents e from being in conv ext F . Lying in aff F , e 6∈ conv(A\F)
either. Hence conv ext A 6= A. �

Klee’s generalization [2] of Minkowski’s theorem can be strengthened in the same way.

Theorem 2. Let A be convex and line-free. For every face F of A assume ext F ∪extr F is dense
in ext F ∪ extr F. Then conv(ext A ∪ extr A) = A.

We shall prove here a slightly stronger statement.

Theorem 3. Let A be convex and line-free. Suppose for each face F of A, ext F is dense in
ext F and on each extreme ray R of A we can choose a (possibly empty) set M(R) such that the
intersection of R with ∪R M(R) is unbounded. Then conv(ext A ∪ (∪R M(R))) = A.

Proof. We use again induction on the dimension d of A. The statement is obvious for d = 1.
Suppose dim A = d and assume the statement true for all A of smaller dimension. Consider

any face F of A different from A. Then, by the induction hypothesis,

F = conv(ext F ∪ (∪R⊂F M(R))) ⊂ conv(ext A ∪ (∪R⊂A M(R))).

It remains to show that

int A ⊂ conv(ext A ∪ (∪R⊂A M(R))).
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Let a ∈ int A. Since A is line-free, there exists a cap C containing a in its interior. Then
apply Lemma 1 to a and C . Since every point of ext C \ ext A lies in a line-segment between
two extreme points of A or in extr A, there exist finitely many points a1, . . . , ak ∈ ext A and
b1, . . . , b j ∈ extr A, such that a ∈ int conv {a1, . . . , ak, b1, . . . , b j }. Now, each bi lies on a
segment ci di included in an extreme ray R of A, with ci ∈ ext A and di ∈ ∪R M(R).

Hence

a ∈ intconv{a1, . . . , ak, c1, . . . , c j , d1, . . . , d j }.

If a′i ∈ ext A(1 ≤ i ≤ k), c′i ∈ ext A (1 ≤ i ≤ j), and d ′i ∈ ∪R M(R) (1 ≤ i ≤ j) are chosen
close enough to ai , ci , di respectively, then

a ∈ intconv{a′1, . . . , a′k, c′1, . . . , c′j , d ′1, . . . , d ′j } ⊂ conv(ext A ∪ (∪R M(R))). �

The following example illustrates the larger applicability of Theorem 1, compared with
Minkowski’s theorem.

Example. Let the unit circle C be written in polar coordinates (φ, 1), and take off the arcs
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etc. Let B be the convex hull of the remaining set, placed in the x0y plane of R3, with the centre
of C at the origin 0 of R3, and put

A = {(x, y, z) : z < 0 ∧ x2
+ y2

+ z2
≤ 4}.

Then A, B, and A ∪ B are examples of non-closed convex sets to which Theorem 1 can be
applied.
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