

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 29 (2008) 1956–1958

www.elsevier.com/locate/ejc

Minkowski's theorem for arbitrary convex sets

Tudor Z amfirescu $¹$ $¹$ $¹$ </sup>

Department of Mathematics, University of Dortmund, 44221 Dortmund, Germany

Available online 24 March 2008

Abstract

V. Klee extended a well-known theorem of Minkowski to non-compact convex sets. We generalize Minkowski's theorem to convex sets which are not necessarily closed.

c 2008 Published by Elsevier Ltd

By a classical theorem of Minkowski, every compact convex set is the convex hull of its set of extreme points.

Our goal is to find a variant of Minkowski's theorem having larger applicability than the original version. Already Klee found such a variant allowing unbounded closed convex sets [\[2\]](#page-2-0). We shall extend the family of convex sets by relaxing the requirement that they are closed.

Let *A* be a convex set in \mathbb{R}^d with non-empty interior.

We first reproduce from [\[3\]](#page-2-1) the definition of a face. A convex subset $F \subset A$ is called a *face of A* if $x, y \in A$ and $(x + y)/2 \in F$ imply $x, y \in F$.

Thus, an *extreme point of A* is a face consisting of a single point. Similarly, an *extreme ray* of *A* is a closed half-line which is a face of *A*. And *A* itself is also a face. Every point of *A* lies in the interior int *A* of *A* or in a face distinct from *A*. Let ext *A*, extr *A*, and \overline{A} denote the set of all extreme points, the union of all extreme rays, and the closure of *A*, respectively.

If $x \in A$, the intersection of A with a closed half-space containing x is called a *cap of* x. For *V* ⊂ \mathbb{R}^d , conv *V* denotes the convex hull of *V*.

The following well-known result is due essentially to Steinitz [\[4\]](#page-2-2) (see also [\[1\]](#page-2-3)).

Lemma 1. *If the convex set A is compact, any interior point of A belongs to the interior of the convex hull of at most* 2*d extreme points of A.*

E-mail address: [tudor.zamfirescu@mathematik.uni-dortmund.de.](mailto:tudor.zamfirescu@mathematik.uni-dortmund.de)

¹ Present address: Institute of Mathematics of the Romanian Academy, Bucharest 14700, Romania.

We shall also make use of the following result.

Lemma 2 ([\[3\]](#page-2-1)). *A point* $x \in A$ *is an extreme point of A if and only if there exist caps of x of arbitrarily small diameter.*

Theorem 1. Let A be convex and bounded. Then conv ext $A = A$ if and only if, for every face F *of A, ext F is dense in ext* \overline{F} *.*

This theorem strengthens Minkowski's theorem because, if *A* is compact, every face *F* of *A* is closed, and ext $F = \text{ext }\overline{F}$.

Proof. First, suppose ext *F* is dense in ext \overline{F} for every face *F* of *A*. We show that conv ext *A* = *A*.

We use induction on the dimension *d* of *A*.

The statement is obvious for dimension 1: in this case *A* must be a closed line-segment, and the conclusion is true.

Suppose dim $A = d$ and assume the statement true for all dimensions less than d.

Consider any face F of A different from A. Then, by the induction hypothesis, conv ext $F =$ *F*. Since ext $F \subset \text{ext } A$, $F \subset \text{conv } \text{ext } A$.

It remains to show that int $A \subset \text{conv ext } A$.

Let $a \in \text{int } A$. We find finitely many (in fact we don't need more than 2*d* by [Lemma 1\)](#page-0-1) points a_1, a_2, \ldots, a_k in ext \overline{A} such that

 $a \in \text{intconv}\{a_1, a_2, \ldots, a_k\}.$

Now, clearly, if $a'_i \in \text{ext } A$ is chosen close enough to a_i $(i = 1, ..., k)$, then

 $a \in \text{intconv}\{a'_1, a'_2, \dots, a'_k\} \subset \text{conv ext } A.$

Assume now that ext *F* is not dense in ext \overline{F} for some face *F*. Then there is an extreme point *e* of \overline{F} and a neighbourhood *N* of *e* in aff F such that $N \cap \text{ext } F = \emptyset$. By [Lemma 2,](#page-1-0) there exists a cap of *e* included in *N*. This prevents *e* from being in conv ext *F*. Lying in aff F , $e \notin \text{conv}(A \setminus F)$ either. Hence conv ext $A \neq A$. \Box

Klee's generalization [\[2\]](#page-2-0) of Minkowski's theorem can be strengthened in the same way.

Theorem 2. *Let A be convex and line-free. For every face F of A assume* ext *F* ∪extr *F is dense in* ext \overline{F} ∪ extr \overline{F} *. Then* conv(ext *A* ∪ extr *A*) = *A*.

We shall prove here a slightly stronger statement.

Theorem 3. *Let A be convex and line-free. Suppose for each face F of A,* ext *F is dense in* ext *F and on each extreme ray R of A we can choose a (possibly empty) set M*(*R*) *such that the intersection of R with* $\overline{\bigcup_R M(R)}$ *is unbounded. Then* conv(ext $A \cup (\bigcup_R M(R)) = A$.

Proof. We use again induction on the dimension *d* of *A*. The statement is obvious for $d = 1$.

Suppose dim $A = d$ and assume the statement true for all A of smaller dimension. Consider any face *F* of *A* different from *A*. Then, by the induction hypothesis,

F = conv(ext *F* ∪ (∪_{*R*⊂*F*} $M(R)$)) ⊂ conv(ext *A* ∪ (∪_{*R*⊂*A*} $M(R)$)).

It remains to show that

int *A* ⊂ conv(ext *A* ∪ (∪_{*R*⊂*A*} $M(R)$)).

Let $a \in \text{int } A$. Since A is line-free, there exists a cap C containing a in its interior. Then apply [Lemma 1](#page-0-1) to *a* and \overline{C} . Since every point of $ext{C} \text{ test } \overline{A}$ lies in a line-segment between two extreme points of \overline{A} or in extr \overline{A} , there exist finitely many points $a_1, \ldots, a_k \in \text{ext } \overline{A}$ and $b_1, \ldots, b_j \in \text{extr } \overline{A}$, such that $a \in \text{int} \text{conv } \{a_1, \ldots, a_k, b_1, \ldots, b_j\}$. Now, each b_i lies on a segment *c*_i d_i included in an extreme ray R of \overline{A} , with $c_i \in \text{ext } \overline{A}$ and $d_i \in \overline{\cup_R M(R)}$.

Hence

 $a \in \text{intconv}\{a_1, \ldots, a_k, c_1, \ldots, c_i, d_1, \ldots, d_i\}.$

If $a'_i \in \text{ext } A(1 \le i \le k)$, $c'_i \in \text{ext } A(1 \le i \le j)$, and $d'_i \in \bigcup_R M(R)$ $(1 \le i \le j)$ are chosen close enough to *ai*, *ci*, *dⁱ* respectively, then

a ∈ intconv{ $a'_1, ..., a'_k, c'_1, ..., c'_j, d'_1, ..., d'_j$ } ⊂ conv(ext *A* ∪ (∪*R M*(*R*))). □

The following example illustrates the larger applicability of [Theorem 1,](#page-1-1) compared with Minkowski's theorem.

Example. Let the unit circle C be written in polar coordinates $(\phi, 1)$, and take off the arcs

$$
\frac{1}{3}\pi \le \phi \le \frac{2}{3}\pi, \qquad \frac{1}{3} \cdot \frac{1}{3}\pi \le \phi \le \frac{2}{3} \cdot \frac{1}{3}\pi, \qquad \frac{2}{3}\pi + \frac{1}{3} \cdot \frac{1}{3}\pi \le \phi \le \frac{2}{3}\pi + \frac{2}{3} \cdot \frac{1}{3}\pi,
$$

etc. Let *B* be the convex hull of the remaining set, placed in the *x*0*y* plane of \mathbb{R}^3 , with the centre of *C* at the origin **0** of \mathbb{R}^3 , and put

A = { (x, y, z) : $z < 0 \land x^2 + y^2 + z^2 \le 4$ }.

Then *A*, *B*, and $A \cup B$ are examples of non-closed convex sets to which [Theorem 1](#page-1-1) can be applied.

Acknowledgement

The author thankfully acknowledges partial support from Grant 2-CEx 06-11-22/2006 of the Romanian Government.

References

- [1] L. Danzer, B. Grunbaum, V. Klee, Helly's theorem and its relatives, in: Convexity, in: Proc. Symposia in Pure ¨ Mathematics, vol. VII, AMS, Providence, RI, 1963.
- [2] V. Klee, Extremal structure of convex sets in Banach spaces, Arch. Math. 8 (1957) 234–240.
- [3] R. Schneider, Convex bodies. The Brunn–Minkowski Theory, Cambridge University Press, 1993.
- [4] E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme. I–II–III, J. Reine Angew. Math. 143 (1913) 128–175; 144 (1914) 1–40; 146 (1916) 1–52.