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through arbitrarily small circles. In this paper we prove these and

other similar results.
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Already in 1920 K. Zindler [7] observed that he can push a certain convex

polytope, an affine image of the cube, through a circular hole of a planar

wall, smaller than the section of a circumscribed cylinder (precise definitions

will be given in the next section). Recently, we (with J. Itoh and Y. Tanoue)

[1] did the same with the usual regular tetrahedron. What happens with

the other convex bodies? Of course, not every convex body has this rather

unexpected property. But we shall prove here that most of them enjoy it!

Evidently, these many convex bodies pass through a circle (a circular ring)

smaller than the section of the circumscribed circular cylinder.

Thinking now about continua instead of convex bodies, we discover that most

of them pass not only through sufficiently large, but also through arbitrarily
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small circles. However, this is not true with respect to arbitrary circles! Nor

with respect to arbitrarily small holes in the wall.

It is known [5] that most convex bodies can be carried with some circle (the

body cannot escape from the circle, which surrounds it). This extends to

continua in the stronger way that most of them can be carried with circles

of any size.

Problems of a similar kind, regarding convex bodies passing through non-

circular holes have also been investigated (see [1], [2], [4]).

Definitions and notation

Let C be the space of all continua in IR3, and K ⊂ C the subspace of all

convex bodies, i.e., compact convex sets with interior points. Both spaces,

endowed with the Pompeiu-Hausdorff distance h, are Baire spaces. As usual,

we say that most elements of a Baire space enjoy property P if those elements

not enjoying P form a first Baire category subset.

Let K be a convex body. An unbounded circular cylinder C(K) is called

circumscribed cylinder of K if C(K) includes K and its orthogonal section

has minimal radius. A convex body can have several circumscribed cylinders.

A hole H of the plane Π is a 2-dimensional convex body included in Π. We

say that the continuum K passes through the hole H if there is a continuous

function f : [0, 1] → C such that f(0) and f(1) are separated by Π, f(t) is

congruent to K and f(t) ∩ Π ⊂ H for all t ∈ [0, 1].

Let C be a circle in IR3.

The convex body K is said to be held by by the circle C if, for some K ′ ∈ K

congruent toK, there is no congruence ct : IR
3 → IR3 depending continuously

on t, such that c0 is the identity, c1(K) = K ′ and ct(K) ∩ C = ∅ for all

t ∈ [0, 1].

We say that K ∈ C passes through the circle C if for every t ∈ C, there

exists a congruence ct : IR
3 → IR3 depending continuously on t, such that

ct(K) ∩ C = ∅ for all t ∈ C and, for each point x ∈ K, the closed curves C

and {ct(x) : t ∈ C} are linked.

We denote by rp(K) the radius of the smallest circle through which K can
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pass.

With Zindler’s observation in mind, V. Klee [3] raised in 1996 the problem of

determining the smallest number r such that, whenever a convex body can

pass through a circle of radius 1 it can also pass through a long cylinder of

radius r, i.e.

r = sup
K∈K

rc(K)/rp(K).

This is still open.

Convex bodies passing through circles

For an ellipsoid E, the smallest circle through which E can pass has the same

size as the section of the circumscribed cylinder of E. The same is true for

long right prisms. Are these examples exceptional?

Our first theorem confirms it.

Theorem 1. All convex bodies, except those in a nowhere dense subset, pass

through circles smaller than the section of their circumscribed cylinders.

The aim of this section is to establish Theorem 1. This needs some prepara-

tion.

Let ΞK denote the cylinder with the z-axis as symmetry axis, congruent to

a circumscribed cylinder of K ∈ K, and let rc(K) be their radius.

Suppose now that the vertical cylinder Z, verifying in cylindric coordinates

(ρ, α, z) the equation ρ = rc(P ), is itself circumscribed to the polytope P .

Let Pξ be the intersection of P with the plane z = ξ.

For every ξ, the set Pξ ∩Z is finite. If Pξ ∩Z 6= ∅, then every point of Pξ ∩Z

(which must be a vertex of Pξ if the convex polygon Pξ is not degenerate) is

either a vertex of P or an interior point of an edge of P lying entirely on Z.

Let J = {ξ : Pξ ∩ Z 6= ∅}. This set is a finite union of closed intervals, each

of which is possibly reduced to a single point.

If ξ ∈ bdJ then Pξ ∩ Z ⊂ V (P ), where V (P ) denotes the vertex set of P ,

but the converse is in general not true.

The following criterion was proved in [6].
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Lemma. If, for every ξ ∈ intJ, (0, 0, ξ) /∈ conv(Pξ ∩Z), then rp(P ) < rc(P ).

Proof of Theorem 1. Let U ∈ C be open, and choose a polytope P ∈ U,

with vertices in general position, in particular without parallel or orthogonal

line-segments joining vertices.

Consider ΞP and assume it is circumscribed to P . Then

(0, 0, ξ) ∈ conv(Pξ ∩ Z)

is possible for some ξ ∈ intJ only if Pξ∩Z consists of two points (rc(P ), α, ξ)

and (rc(P ), α+ π, ξ) symmetric with respect to the z-axis, one of which, say

the second, lies in the interior of a vertical edge of P .

Replace the polytope P by the polytope Q ∈ U defined as the convex hull of

(V (P ) \ {(rc(P ), α, ξ)})∪

∪{(rc(P ), α− ε, ξ + ε), (rc(P ), α + ε, ξ), (rc(P ), α− 2ε, ξ − ε)},

for adequately small ε > 0. Then ΞP = ΞQ, and the condition of the Lemma

is satisfied for Q.

Thus, for a circle C of radius smaller than rc(Q), there is a congruence ct

such that ct(Q) ∩ C = ∅ for all t and, for each x ∈ Q, the curves C and

{ct(x) : t ∈ C} are linked.

This remains true for all convex bodies at Pompeiu-Hausdorff distance at

most η from Q, if η > 0 is chosen smaller than the positive number

inf{‖x− y‖ : x, t ∈ C, y ∈ ct(Q)}.

Hence, the statement is proven.

�

Continua passing through holes

Theorem 2. Every convex body can be approximated by continua passing

through any hole.
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Proof. Let K ∈ K and η > 0.

Let Π1, ...,Πn be the parallel planes

Πi = {x : 〈x, v〉 = a+ 2ηi}

which meetK, where v is an orthogonal unit vector. So, the distance between

consecutive planes is 2η.

Figure 1

Every section Ki = K ∩ Πi can be approximated by an arc {αi(t) : 0 ≤ t ≤
1} parametrized proportionally to arc-length, connecting grid points (of the

planar grid with distance 2η between neighbouring points) as shown in Fig.

1. Let ai = αi(0) and bi = αi(1). We transform these arcs by moving each

point αi(t) to the new position βi(t) = αi(t) + ηtv, such that βi(0) = αi(0)

and ‖βi(1) − αi(1)‖ = η. Now join βi(1) with βi+1(0) by a line-segment σi.

Put σn = ∅.
In this way we obtain an arc Γ = ∪n

i=1(βi([0, 1])∪σi) with h(K,Γ) < 4η. The

intersection of Γ with any plane parallel to Π1 is a single point or empty.

This Γ ∈ C is the set we are looking for.

It is obvious that, locally, a movement of Γ in direction of a line-segment in

Γ containing βi(t) and lying in βi([0, 1]) or σi for suitable i and t allows Γ to

pass through a prescribed point of the hole. No rotation is ever necessary,

just translations.

�

While for convex bodies, passing through a circular ring and passing through

a circular hole in a wall are equivalent adventures, this is not so for arbitrary
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continua. The next result illustrates this, by showing that the “spectacular”

result of Theorem 4 is not true if passing through a circle is replaced by

passing through a circular hole.

Theorem 3. The continua passing through arbitrarily small holes form a

nowhere dense set.

Proof. Let M ∈ C and ε > 0. Consider a cube of side-length ε and let A be

the union of all 8 line-segments joining its centre with the vertices.

It can be checked that A cannot be approximated by any continuum passing

through an arbitrarily small hole of some plane. (This becomes wrong if the

cube is replaced by a regular octahedron!)

Let A′ be a congruent copy of A such that M ∩ A′ is a single point. Then

the continuum M ′ = M ∪ A′ is at Pompeiu-Hausdorff distance less than 2ε

from M . Neither M ′, nor the continua in a whole neighbourhood of M ′, can

pass through any hole in the wall which is small compared with ε.

�

Continua passing through circles

Theorem 4. Most continua pass through arbitrarily small circles, i.e. for

any ε > 0, they pass through a circle of diameter less than ε.

Proof. Let Cη ⊂ C be the set of all continua which pass through a circle of

radius at most η > 0. We first prove that Cη is dense in C.

Let M ∈ C. Let Z ⊂ 8ηZZ3 be a set satisfying h(Z,M) < 8η. By joining

various pairs of points of Z at distance 8η we get a geometric connected

graph G ∈ C also satisfying h(G,M) < 8η. Now, we approximate G by a

Jordan arc. Although this is not difficult, we give a proof.

First remove an edge of a cycle, and repeat this as long as cycles exist in G.

We obtain a tree T spanning G, with h(T,M) < 8η.

Now, let T ′ be an embedding of T in a plane Π realized with line-segment

as edges. There are many ways of performing this embedding e. We shall

choose one which respects the following requirement. For any vertex v of T ,
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let the neighbourhood N(e(v)) of e(v) consist of the vertices v1, ..., vk (k ≤ 6)

lying in this order around e(v) in Π; it is required that, if k ≥ 4, then

〈e−1(vi)− v, e−1(vi+1)− v〉 = 0,

i.e. the angle between the edges (v, e−1(vi)) and (v, e−1(vi+1)) should be π/2

(i = 1, ..., k; vk+1 = v1). There is no difficulty in arranging that e fulfils this

requirement. Now let ε > 0 be very small, and consider the closed Jordan

curve

J ′ = {x ∈ Π : d(x, T ′) = ε}.

When going along J ′ one “visits” each vertex v′ of T ′ d(v′) times. The curve

J ′ can be transferred to a closed Jordan curve J in IR3 consisting of points

at distance exactly η from T in a quite obvious way. Every vertex v of T is

visited d(v) times, and at each visit the distance to v is η or η
√
2. From the

visit of a vertex v to the visit of a neighbour w of v, the curve J may need

to spiral on the cylinder of radius η and axis vw. Thus, h(J, T ) = η and

h(J,M) ≤ 9η.

Now, the removal of a small piece from this curve produces a Jordan arc J ′′

and h(J ′′,M) ≤ 9η. Obviously, this arc passes through a circle of radius η.

So, Cη is dense in C.

Of course, any continuum sufficiently close to J ′′ passes through the same

circle. So, C \ Cη is nowhere dense. This implies that most continua lie in

C \ ∪∞
n=1(C \ C1/n) = ∩∞

n=1C1/n,

i.e. pass through arbitrarily small circles. �

Theorem 5. Consider a circle. The (second category) set of all continua

passing through that circle is not dense in C.

Proof. Let C and C∗ be the given circle and set of continua. Of course, C∗

is of second category, containing all continua of diameter smaller than diam

C/2. However, no continuum in a whole neighbourhood of the arc A depicted

in Fig. 2 will pass through the circle C of Fig. 2.

�
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Continua held by a circle

All convex bodies, except those in a nowhere dense subset, can be held using

a circle [5]. Here the holding circle strongly depends on the convex body to

be held. Things get easier when continua should be held.

Theorem 6. Most continua can be held by any circle.

Proof. We prove that those continua not being held by any circle of diameter

at least ε > 0 form a nowhere dense set Cε.

Let M be a continuum. Take η > 0. Now the arc A of Fig. 2 has diam-

eter η/2 and its knot is small compared with ε. No circle C of radius at

least ε positioned as in Fig. 2 can be removed without deformation. Glue

a congruent copy A′ of A to M by identifying an exposed point of convM

with the endpoint a ∈ A such that M \ {a} and A′ \ {a} be separated by

a plane through a, and obtain a continuum M ′. We have h(M,M ′) < η.

Every continuum in a small neighbourhood of M ′ is held by C. Thus, Cε is

nowhere dense.

Figure 2

Hence ∪nC1/n is of first Baire category and contains precisely all continua

not being held by any circle.

�
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