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Introduction

Everybody knows what an extreme point of a convex body is. Does this notion have

an opposite? A most non-extreme point? Or: can we somehow say that a point is more

or less extreme than another?

In this paper we show a way to do this.

We shall define the notion of moderation for points of a convex body. Then the points

of largest moderation will be the moderate, those of smallest moderation the extreme

points, as you would expect.

Now, let us become more concrete.

A convex body K ⊂ IRd is, as usual, a compact convex set with nonempty interior.

We always assume d ≥ 2. A cap of K is a non-empty intersection of K with some closed

half-space.

We define the moderation number, or simply the moderation, m(x) of x ∈ K as the

infimum of the set of diameters of all caps of K containing x, divided by diamK. In this

paper we shall therefore always assume or scale K to have diameter 1.

Theorem 0. A point x ∈ K is an extreme point of K if and only if m(x) = 0.

This reformulation of a theorem from Schneider’s book [2] was at the origin of our

approach in this paper. Also, we notice a certain relationship with the investigation

contained in [1].

Let mK = supx∈K m(x) be the moderation of K.

Put SK(a) = {x ∈ K : m(x) ≥ a}. The points in SK(mK) are called the moderate

points of K, and the set SK(mK) itself the moderation set of K.
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We shall see (Theorem 2) that this set must be non-empty.

The concept of moderation allows seeing extremal point theory in another light. This

is the main motivation for introducing it and for the initial investigation contained in this

paper.

Clearly, balls are most moderate, i.e. have moderation 1. We shall establish that,

while this property characterizes the balls for d = 2, in higher dimensions there are many

more convex bodies with moderation 1.

The space of all compact sets in IRd, as well as its subspaces K, of all convex bodies,

and K1, of all convex bodies of diameter 1, are equipped with the usual Pompeiu-Hausdorff

metric.

Theorem 1. The function m : K → [0, 1] is upper semi-continuous.

Proof. Let xn → x and suppose that m(xn) → k and m(x) < k. First let us notice

that, for a fixed u ∈ IRd, the cap

Cλ = {y ∈ K : 〈y, u〉 ≤ λ}

depends continuously on λ. Since diamC depends continuously on C, too, we see that

diamCλ is a continuous function of λ.

Now, there exists a cap C 3 x with diamC < k, because m(k) < k. For some u and

λ, C = Cλ. By the above continuity property, for some λ′ > λ, still diamCλ′ = k′ < k.

But the new cap Cλ′ contains x in its interior, so it must contain all points xn starting

with some index n = n0, whence m(xn) ≤ k′ for all indices n ≥ n0. This contradicts

m(xn) → k, and our proof is finished.

Theorem 2. For any convex body K and any number α ∈ [0,mK ] the set SK(α) is

nonempty and convex. In particular, the moderation set is non-empty and convex.

Proof. Since the function m is by Theorem 1 upper semi-continuous, it realizes its

supremum, so there exists a moderate point.

All sets SK(α) are nonempty, for 0 ≤ α ≤ mK , because they include the moderation

set.

Let now x, y ∈ SK(α) and z belong to the line-segment xy.

Suppose m(z) < α. Let C be a cap verifying z ∈ C and diamC < α. Then either

x ∈ C and m(x) < α, or y ∈ C and m(y) < α, both in contradiction with the hypothesis.

Thus, m(z) ≥ α, and SK(α) is convex.
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About the moderation number

We now look at the moderation mK of K. Obviously, the moderation number cannot

be larger than 1. It is easily seen that every ball has moderation 1, but it will be a

little surprising to conclude that mK = 1 does not characterize the ball (in arbitrary

dimension).

A little elementary plane geometry is needed to prove the following lemma.

Lemma. Let a, b, c, d ∈ IR2 be such that ab ∩ cd = ∅ and ‖a − b‖ = ‖c − d‖ = 1.

Then

max{‖a− c‖, ‖a− d‖, ‖b− c‖, ‖b− d‖} > 1.

Theorem 3. In the plane, mK = 1 if and only if K is a ball.

Proof. Let the convex body K have mK = 1. Choose x ∈ K such that m(x) = 1. We

claim that each chord ab 3 x of K has length ‖a− b‖ = 1.

Indeed, assume a, b ∈ bdK, ab 3 x, and ‖a − b‖ < 1. The two caps of K with ab on

their boundaries have diameter 1. The diameter is realized by two chords. If they are

disjoint the Lemma yields the existence of a chord of length greater than 1. Thus, they

must have an endpoint in common, which is a or b, say b. Hence, we found two points

a′, a′′ ∈ bdK separated by the line through a, b, with ‖a′ − b‖ = ‖a′′ − b‖ = 1. Now take

any cap with x on its boundary, which contains a, but neither a′ nor b. The diameter

of this cap is 1 and is realized by a chord of K disjoint from a′b, which implies, by the

Lemma, that diamK > 1, a contradiction.

By Theorem 8, if ab ⊂ bdK, then m(x) ≤ 1
2
, which is false. So, there are arcs in bdK

starting in a, respectively b, given in polar coordinates (θ, ρ) with origin x by ρ = ρ(θ),

such that ρ(0) = ‖x− a‖ and ρ(π) = ‖x− b‖.
If ρ is constant, then ρ = 1

2
and K is a circular disc.

If ρ is not constant, let ξ be maximal such that ρ is constant in [0, ξ], and let a′, b′ be

the points of polar coordinates (ξ, ρ(0)), (π + ξ, ρ(π)).

Let a∗ = (ξ∗, ρ(ξ∗)), b∗ = (π + ξ∗, ρ(π + ξ∗)) be such that ξ∗ is slightly larger than

ξ and ρ(ξ∗) 6= ρ(0). Assume, to make a choice, that ρ(ξ∗) < ρ(0). Then necessarily

ρ(π + ξ∗) > ρ(π).

The function ρ has at every θ a left derivative ρ′−(θ) and a right derivative ρ′+(θ), and

ρ′−(θ) ≥ ρ′+(θ), because K is convex. But ρ(θ) = 1 − ρ(π + θ). This yields ρ′−(π + θ) ≤
ρ′+(π + θ), whence ρ′− = ρ′+ = ρ′ everywhere.
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Since ρ(ξ) > ρ(ξ∗), there is a point η ∈ ]ξ, ξ∗[ such that ρ′(η) < 0. Then ρ′(π + η) > 0.

Consider the points aη and bη, of polar coordinates (η, ρ(η)) and (π + η, ρ(π + η)),

respectively. Because ρ′(η) < 0 and ρ′(π + η) > 0, the tangent lines at aη, bη to bdK

and the chord aηbη form an (isosceles) triangle ∆. Thus, any chord of K parallel and

close enough to aηbη, but disjoint from ∆, is longer than aηbη. This and ‖aη − bη‖ = 1

contradict diamK = 1.

In higher dimensions the situation changes.

Theorem 4. Assume M ⊂ Sd−1 is symmetric with respect to 0 and meets each great

(d− 2)-dimensional subsphere of Sd−1. Then convM has moderation 1.

Proof. We prove that m(0) = 1. Indeed, any cap C containing 0 must include M ∩H

for some hyperplane H 3 0. Since M ∩ H is non-empty and symmetric with respect to

0, there must be two diametrically opposite points of Sd−1 in C. Then diamC = 1, and

m(0) = 1 too.

The next result presents a lower bound for mK involving the inradius of K.

Theorem 5. Let r be the inradius of K. Then

mK >

√
1− 2r + 2r2

1− r +
√

1− 2r + 2r2
.

Proof. If K is a ball then mK = 1, r = 1/2, and indeed 1 > 2−√2.

Suppose now that K is not a ball.

Let a, b ∈ K be at distance 1. Denote by x the mid-point of the line-segment ab.

Assume that ‖x− y‖ = ε and xy ⊥ ab for some point y ∈ K. Then the centre i of the

circle inscribed in the triangle aby has moderation

(∗) m(i) ≥
√

1 + 4ε2

1 +
√

1 + 4ε2
.

Indeed, let j ∈ ay and k ∈ ab satisfy ij ‖ ab and ai ⊥ ik. Since 2i− k ∈ ay, ij is half

as long as ak.

Now, each cap of aby containing i and a (or i and b) has diameter at least ‖a − k‖.
Also, each cap of aby containing i but neither a nor b has diameter at least 2‖i−j‖. Hence

i has moderation ‖a − k‖ in aby. Therefore m(i) ≥ ‖a − k‖, and elementary calculation

yields ‖a− k‖ =
√

1 + 4ε2/(1 +
√

1 + 4ε2).

Now let c be the center of a ball B of radius r included in K. Let c1 ∈ ab and c2 ∈ bdB

satisfy c1c2 ⊥ ab and c ∈ c1c2. Since B cannot meet the hyperplane through a orthogonal

to ab, ‖a− c1‖ ≥ r. Clearly, ‖c1 − c2‖ ≥ r too.
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Because K is not a ball, a and b cannot both belong to B, say b 6∈ B. For some point

c′ with c2 ∈ cc′, bc′ is tangent to bdB. We take now y ∈ bc′ such that xy ⊥ ab. We have

y ∈ K and, remembering the notation ‖x− y‖ = ε,

ε

‖c′ − c1‖ =
1/2

‖b− c1‖ .

Since ‖c′ − c1‖ > ‖c2 − c1‖ ≥ r and ‖b− c1‖ ≤ 1− r, we have

ε >
1

2
· r

1− r
.

This inequality and (*) imply

m(i) >

√
1− 2r + 2r2

1− r +
√

1− 2r + 2r2
.

Hence mK must satisfy the same strict inequality.

Corollary 1. For any convex body K, mK > 1
2
.

Proof. Indeed, putting ε = r2(1− r)−2, we have ε > 0 and

mK >

√
1− 2r + 2r2

1− r +
√

1− 2r + 2r2
=

√
1 + ε

1 +
√

1 + ε
>

1

2
.

Theorem 6. Defined on K1, the function mK is non-decreasing.

Proof. Consider the convex bodies K, L ∈ K1, with K ⊂ L. Let x be a moderate

point of K. Take a cap C of K containing x. Thus C = K ∩Π for some closed half-space

Π. Since K ∩ Π ⊂ L ∩ Π, we have diam(K ∩ Π) ≤ diam(L ∩ Π) and

inf
Π3x

diam(K ∩ Π) ≤ inf
Π3x

diam(L ∩ Π),

i.e. the moderation mK of x in K is not larger than the moderation of x in L. Hence

mK ≤ mL.

Remark. The function mK is not strictly increasing with respect to K.

Indeed, this is quite obvious for d ≥ 3, because, for any convex body K with S1 ⊂
K ⊂ convS2,

mK = mconvS2 = 1.

But, also for d = 2, the union E of the equilateral triangles abd and bcd, and the union

R of the Reuleaux triangles abd and bcd (both E and R of diameter 1), have the same

moderation, 3−1/2.
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This Remark prompts the following.

Theorem 7. Assume that the convex bodies K, L ∈ K1, with K ⊂ L, have the same

moderation. Then the moderation set of K is included in the moderation set of L.

We omit the proof, since it parallels that of Theorem 6.

Theorem 8. If d = 2, K ∈ K1, and x ∈ bdK, then m(x) ≤ 1/2.

Proof. Indeed, if x is an extreme point, then m(x) = 0, by Theorem 0.

If not, let yz be the maximal line-segment included in bdK, with x ∈ yz. We may

assume ‖x − y‖ ≤ ‖x − z‖. Since ‖y − z‖ ≤ 1, we have ‖x − y‖ ≤ 1/2. Then, clearly,

there is a cap of K containing x, of diameter larger than ‖x− y‖, but as close to ‖x− y‖
as we wish. On the other hand, every cap containing x will also contain y or z and will

therefore have diameter at least ‖x− y‖. Thus, m(x) = ‖x− y‖ ≤ 1/2.

Theorem 8 does not hold in higher dimensions, because, for a half-ball K ⊂ IRd with

convSd−2 as a face, 0 ∈ bdK and m(0) = 1.

Thus, we contemplate the possibility for a convex body in dimension at least 3, to

have moderate points in its boundary, while this is impossible in the plane: indeed, if

K ⊂ IR2, for x ∈ bdK we have m(x) ≤ 1/2 by Theorem 8, and for x ∈ SK(mK) we have

m(x) = mK > 1/2 by Corollary 1.

We present several examples of convex bodies with their moderation.

(i) The moderation number of an equilateral triangle equals 2/3.

(ii) The moderation number of a regular tetrahedron is 3/4.

(iii) The moderation number of a square equals
√

5
8
.

(iv) The moderation number of a cube is
√

3
4
.

For any convex body K and x ∈ K, let M(x,K) denote in the next theorem the

moderation of x in K.

Theorem 9. Let K be a convex body in IRd, d ≥ 3, and 2 ≤ k < d. Let x ∈ K and

and Sx be the set of all k-dimensional sections of K through x. Then

min
S∈Sx

m(x, S) ≤ m(x,K)

Proof. Let C0(x) be a cap of K containing x and attaining minimal diameter. Let

a, b ∈ K be at distance 1. Let S be a k-dimensional section through x containing a, b.
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It is clear that the diameter of the cap C0(x) ∩ S of S is not larger than the diameter of

C0(x). Thus we get minS∈Sx m(x, S) ≤ m(x, K)

Remark. The minimum in Theorem 9 is not necessarily attained. Indeed, consider

the vertices v1, . . . , v4 ∈ S2 of a regular tetrahedron, join all pairs of vertices by minimizing

geodesics (arcs of great circles) on S2, and denote the union of these 6 arcs by E. Let M

be a small open neighbourhood of E in S2, and take K = conv(S2 \M). Every section S

of K through 0 contains antipodal points of S2, whence m(0, K) = 1, but no such section

S of K is a circular disk, and therefore m(0, S) < 1 by Theorem 3.

About the moderation set

We investigate here the moderation set SK(mK) of all moderate points of K. We shall

see that, in general, the moderation set may have non-empty interior. This is however

excluded if K is point-symmetric. Several examples will illustrate the situation.

Theorem 10. If K is centrally symmetric, then the moderation set contains the

centre and has empty interior.

Proof. We may assume that 0 is the centre of K.

Let x ∈ K \ {0}. For each cap C 3 0, we have x ∈ C or x ∈ −C. So the set of all

diameters of caps containing 0 is included in the set of all diameters of caps containing

x. Hence m(x) ≤ m(0), and 0 ∈ SK(mK).

Now, let Π be a hyperplane through 0, and Π+ a half-space with boundary Π. Then

m(0) = inf
Π+

diam(K ∩ Π+)

is realized for some half-space Π+
0 of boundary Π0.

Let Π1 ⊂ Π+
0 be a hyperplane parallel to and distinct from Π0. The half-space Π+

1 ⊂
Π+

0 with boundary Π1 determines a cap C1 = K ∩ Π+
1 . Let a, b ∈ C1 verify ‖a − b‖ =

diamC1. Assume, for example, that a is not closer than b to Π1. The points a, b, the

intersection c of b(−a) with Π0, and d = a − b + c are the vertices of a parallelogram in

C0 = K ∩ Π+
0 . We have

diamC1 = ‖a− b‖ < ‖a− a + c

2
‖+ ‖b + d

2
− b‖

=
1

2
‖a− c‖+

1

2
‖d− b‖ ≤ 1

2
diamC0 +

1

2
diamC0 = diamC0.
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Thus, every point x ∈ K \ Π0 lies in a cap of diameter smaller than diamC0 = m(0).

Hence m(x) < m(0), and SK(mK) ⊂ Π0.

Theorem 11. In any dimension, there are convex bodies for which the moderation

set has non-empty interior.

Proof. Let Γ ∈ IR2 be a circle of centre 0 and diameter α, and take u, v ∈ Γ with

‖u− v‖ = α. Consider the points u′, v′ ∈ Γ such that u′v′ ‖ uv and

0 < 6 u0u′ = 6 v0v′ < arctan
1

2
.

The tangent lines at u′ and v′ to Γ meet at a point w. Then

‖u′‖
‖u′ − w‖ = tan 6 u0u′ <

1

2
,

which yields ‖u′ − w‖ > α.

Let u′′ ∈ u′w, v′′ ∈ v′w satisfy

‖u′ − v′′‖ = ‖v′ − u′′‖ = α.

Put K = conv(Γ ∪ {u′′, v′′}), and choose α such that diamK = 1.

Also, consider the midpoint x of u′v′, and the convex quadrilateral Q with vertices 0,

0u′ ∩ xu, x, 0v′ ∩ xv.

It is not difficult to verify that all points of Q are moderate in K, and mK = α. (In

fact, the moderation set is larger, but strictly included in conv{u, u′, v, v′}.)
To produce a higher-dimensional example it suffices to rotate K around the axis

through 0, x.

Theorem 12. If a planar convex body is symmetric with respect to two lines, then

their intersection is a moderate point.

Proof. Let K be a planar convex body, symmetric with respect to the lines L1 and L2.

We may assume that L1∩L2 = {0}. Let Ri be the reflection with respect to Li (i = 1, 2).

Note that m(Ri(x)) = m(x). It is well known that R = R1 ◦R2 is the 2θ-rotation around

0, where θ is the angle between L1 and L2.

First we will show that 0 is a moderate point. Indeed, let x be a moderate point, the

convex hull H of {Ri(x) : i ∈ {0, 1, · · · , d π
2θ
e}} contains 0. Since all Ri(x) are moderate

points and the moderation set is convex by Theorem 2, 0 is also a moderate point.

We now consider three examples. For the first two of them we leave the pleasure of

verifying the calculation to the reader.
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Example 1. Let R(α, β) be a rectangle with centre 0, diameter 1, and side-lengths α

and β (α ≤ 2−1/2 ≤ β, α2 + β2 = 1).

(1) If α = β = 2−1/2, the moderation set is {0}.
(2) If 1 < β

α
< 2

√
13+4

√
6

73
, the moderation set is the line-segment of length α −√

4α2 − 3β2, with 0 as mid-point, parallel to the short side; it is included in intR(α, β).

(3) If 2
√

13+4
√

6
73

≤ β
α

< 2, the moderation set is the line-segment of length α + β −√
2α2 + β2

2
with 0 as mid-point, parallel to the short side; it is included in intR(α, β).

(4) If β
α
≥ 2, the moderation set is the line-segment joining the mid-points of the two

long sides of R(α, β).

Example 2. Consider a rhombus with diagonal-lengths α and 1 (α < 1).

(1) If 3−1/2 ≤ α < 1, then 0 is the unique moderate point.

(2) If α < 3−1/2, then the moderation set is the line-segment of length α − α
√

1+α2

2
,

with 0 as mid-point, and strictly included in the short diagonal.

Example 3. Let H be a half disk with diameter 1. The moderation set of H contains

a single point interior to H.

Proof. Let D be the closed disk with centre 0 and diameter 1 and H = D∩{(x, y)|x ≥
0}. Put D(t) = H ∩ {(x, y)|x ≥ t} and a = (0, 1/2). Let T (t) be the subset of all points

of H above the line lt through (t, 0) which intersects bdH at b = (0, yt) and bdD at c

such that ‖a − b‖ = ‖a − c‖. It is clear that the diameter of D(t) is fD(t) :=
√

1− 4t2

and the diameter of T (t) is fT (t) := ‖a− b‖ = 1/2− yt. Note that fT (t) is increasing and

fD(t) is decreasing (when t increases from 0 to 1/2). Then the only one moderate point

of H is the unique point (t0, 0), where fD(t0) = fT (t0).
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