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Abstract. There exist planar graphs in which any two vertices are
missed by some longest cycle. Although this requirement is very strong,
we prove here that such graphs can also be found as subgraphs of the
square and hexagonal lattices. Considering (finite) such lattices on the
torus and on the Möbius strip enables us to reduce the order of our
examples.

Introduction

Do we have small (if possible minimal) k-connected graphs with the
property that for any j vertices there is a longest path (cycle) avoiding all
of them? This question was a strengthening of Gallai’s question [1] and it
was raised by Zamfirescu [8]. In particular, the question was (also) asked
for planar graphs. After getting several answers for his questions (see [7],
[3], [9]), in 2001 he asked to investigate lattice graphs from this point of
view [10].

We shall say that a graph is a C
j
k
-graph if it is k-connected and any

set of j vertices is missed by some longest cycle. The existence of C1
2
-

graphs in various lattices has been verified in [2], [4] and [5]. So far, no
C

2
2
-graphs have been discovered in any lattice. It is perhaps interesting

to mention that no C
3
2
-graph at all is known, so far.

In this paper, we first prove the existence of C2

2
-graphs in the infinite

square lattice L and hexagonal lattice H, obviously with a considerably
larger number of vertices than the smallest known C

2

2
-graph in the plane,

whose order is 135, found by Zamfirescu [9].

Second, we consider (finite) square and hexagonal lattices on the torus
and on the Möbius strip, which are defined according to [4], and construct
C

2

2
-subgraphs of these lattices.
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Of great help will be the following lemma, due to which proofs of
our main results reduce to finding appropriate embeddings in the various
lattices considered here.
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Fig. 1.

Let G be a graph homeomorphic to the graph G′ in Fig. 2(b). The
graph G contains ten subgraphs isomorphic to the graph of Fig. 2(a),
where x, y, z, t and w are numbers of vertices of degree 2.
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Fig. 2.

Lemma. Any two vertices of G are missed by some longest cycle of

G if 2x ≥ y + 2z + 1 and 2t = x+ y + 3z + 3w + 8.

P roof . In the graph G, every longest cycle which passes through the
subgraph, which we shall call “house”, shown in Fig. 1 must adopt there
one of the paths in Fig. 3.
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Fig. 3.

The paths from (b) to (e) of Fig. 3, are of the same length. The lengths
of the paths shown in Fig. 3, (a), (b), (f), (g) and (h) are respectively

a = 4x+ y + 7,

b = 3x+ y + z + 7,

f = 2x+ 2z + 8,

g = x+ 2y + z + 8,

h = 2x+ 2y + 2z + 8.

The graph G has the desired property if the following two conditions
hold.

(i) Every vertex in a “house” is avoided by a path of one of the types
(a), (b), (c), (d) and (e) of Fig. 3 (including paths symmetric to them).

(ii) In the graph (c) of Fig. 2, which is obtained from G′ by con-
tracting all houses, every pair of edges should be avoided by some cycle
corresponding to a longest cycle of G.

Now, we compare the paths joining the same “corners” of the house.

First, we compare a, f and h. Since h is never smaller than f , and
since we don’t need the path of Fig. 3(h), we have the condition a ≥ h,

which means the inequality of the statement.

Second, we compare all other paths of Fig. 3, since many are equally
long, what remains is b ≥ g, because we don’t need the path of Fig. 3(g).
This means 2x ≥ y + 1, which follows from the previous inequality.

For any pair of edges of the graph of Fig. 2(c) there is a cycle of one of
the two types shown on Fig. 4(u′), (v′) avoiding both of them. In G these
become cycles like those depicted in Fig. 4(u), (v), and have lengths

u = 4a+ 5b+ 4t+ 5w = 31x+ 9y + 5z + 5w + 4t+ 72,
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v = 2a+ 8b+ 2t+ 8w = 32x+ 10y + 8z + 8w + 2t+ 80,

respectively. The equality u = v, is equivalent to 2t = x+y+3z+3w+8,
which is the required second condition of the lemma.

Embeddings In Square Lattice Graphs

Besides the usual lattice L we shall also consider the toroidal lattices
and Möbius strip lattices. We begin this section by the construction of
toroidal and Möbius strip lattices.

To obtain the toroidal lattice LT
m,n, we consider an (m + 1) × (n +

1) rectangle (with (m + 1)(n + 1) vertices) in L and identify opposite
vertices on the boundary as indicated on Fig. 5(a). It hasmn vertices. And
to obtain a Möbius strip lattice LM

m,n of order mn, we identify opposite
vertices taken in reverse order in an m× (n + 1) rectangle, as indicated
in Fig. 5(b).
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Fig. 5.

Our first result follows.

Theorem 1 There exists a C
2
2
-graph of order 490 in L.

Proof . For y = 1, z = 2, x = 3, t = 24 and w = 10, the conditions of our
Lemma are verified and the corresponding graph G is of order 490 with
the desired property. Fig. 6 reveals an embedding of G in L.
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Fig. 6.

Theorem 2 The lattice LT
26,16 contains a planar C

2

2
-subgraph of order

315.

Proof . Let us take y = 1, z = 2, x = 3, t = 9 and w = 0 in the Lemma.
It can be easily checked that the chosen values y, z, x, t and w satisfy the
conditions of the Lemma and the resulting graph G is a C

2
2
-graph of order

315. Fig. 7 is an embedding of G in LT
26,16.
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Fig. 7.

Theorem 3 In LM
34,18 we have a planar C

2
2
-graph of order 350.

Proof . To obtain a graph as required we will use our Lemma once again.
Now we take y = 1, z = 2, x = 3, t = 12 and w = 2, which satisfy the
conditions of the Lemma, and the resulting graph G is a C

2

2
-graph of

order 350. Fig. 8 presents an embedding of G in LM
34,18.
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Needless to say that we made every effort to minimize the order of
our graphs in all three results.

Remark 1. Notice that our graphs produced in the proofs above
are all planar, even homeomorphic, but still of different orders. This is
going to be equally true for the graphs obtained in the next section. The
freedom of choosing non-planar graphs in the toroidal and Möbius strip
lattices has not been used. Making use of this freedom may be the key
for solving the Problem at the end of this paper.

Embeddings In Hexagonal Lattice Graphs

Now we are going to prove the existence of C2

2
-graphs in H, HT

m,n and

HM
m,n.

Just like LT
m,n and LM

m,n, we define lattice graphs HT
m,n and HM

m,n of
order mn according to Fig. 9(a) and Fig. 9(b) respectively.
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Fig. 9.

Theorem 4 The lattice H contains a C
2

2
-subgraph of order 950.

Proof . Once again we consider our Lemma and take y = z = 3, x =
8, t = 44 and w = 20. This time the resulting graph G is a C

2

2
-graph of

order 950. An embedding of G in H is shown in Fig. 10.
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Fig. 10.

Theorem 5 There exists a planar C
2
2
-subgraph of HT

30,32 of order 600.

Proof . We use again a particular case of the Lemma as its conditions
are also satisfied for y = z = 3, x = 8, t = 14 and w = 0, and the
corresponding graph G is of order 600. Fig. 11 shows an embedding of G
in HT

30,32.

o o

o o

Fig. 11.

Theorem 6 In HM
42,28 we have a planar C

2

2
-graph of order 670.

Proof . The conditions of the Lemma are also verified if we take y = z =
3, x = 8, t = 20 and w = 4, and we are led to a graph G of order 670. Fig.
12 reveals an embedding of G in HM

42,28.
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Remark 2. Fig. 13 and Fig. 14 prove that the lattices L andH contain
a C

j
1
-subgraph for each j ≥ 1 of order 4j+4 and 6j+6 respectively. These

subgraphs are homeomorphic to Thomassen’s examples in [6].

Fig. 13. A connected graph consists of (j+1) vertex disjoint C4 cycles.

Fig. 14. A connected graph consists of (j+1) vertex disjoint C6 cycles.

We conclude this paper with the following problem.

Problem. Find embeddings of smaller order than those presented in
Theorems 1 − 6. Moreover, find lattices of smaller order than those of
Theorems 2, 3, 5, 6, admitting the desired embeddings.
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