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Typical simplicially convex bodies

Tudor Zamfirescu

(Communicated by T. Grundhöfer)

Abstract. In this note we describe some geometrical properties that simplicially convex bod-
ies typically enjoy. It is shown, for example, that they are nowhere dense and of measure zero.
Moreover, they look at least half-dense from any of their points.
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During their long genesis, before having become convex, the convex bodies went through
several interesting intermediate stages. This we learn from work of W. Bonnice and
V. Klee [1], and the author [10], [11]. In those intermediate stages, while not yet con-
vex, they were so-called simplicially convex bodies. A simplicially convex body is the
union of all simplices of dimension less than some fixed number, with vertices in some
fixed compact set. In this note we describe several unexpected properties that many of
them enjoy. To do this, we use Baire categories as a main tool.

Generic results about compact sets can be found e.g. in [14], [4], [17]. Such results
about starshaped compact sets, which are somewhat more closely related to the simpli-
cially convex bodies, appeared e.g. in [15], [6], [17]. The subject of geometric generic
properties in Convexity was treated in many papers, see — to pick only a few examples —
[12], [13], [2], [5] or, more recently, [7].

Definitions and notation

A k-dimensional simplex, a k-simplex, or just a simplex for short, is the convex hull of
k + 1 affinely independent points in Rd.

A set A ⊂ Rd is called `-simplicially convex if, for some set A′ ⊂ Rd, A is the union
S`(A′) of all simplices of dimension less than ` with vertices inA′. Every convex set is `-
simplicially convex, and every `-simplicially convex set is convex if ` > d. We obviously
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have
A = S1(A) ⊂ S2(A) ⊂ · · · ⊂ Sd(A) ⊂ Sd+1(A) = convA.

A set A is said to be simplicially convex if it is `-simplicially convex for some `. Such a
set is called a simplicially (`-simplicially) convex body in case it is compact. It is easily
seen that S`(A) is compact if A is compact.

We continue here the geometric investigation started in [9]. There, among other
things, it was proven that all “holes” of a d-simplicially convex body must be interiors
of d-dimensional polytopes. After this somewhat surprising result, we shall provide here
further insight on the possible number of “holes” and about their boundaries.

For M ⊂ Rd, by intM , bdM , M , convM we denote the interior, boundary, closure,
and convex hull of M . Let C be the complete metric space of all compact sets in Rd, with
the usual Pompeiu–Hausdorff distance. Any closed half-space H+ with the origin 0 of
Rd on its boundary will be called a 0-half-space.

We say that most (or typical) elements of a Baire space enjoy property P if those
elements not enjoying P form a first category set. Sometimes we shall use the notion of
“typical element” even before mentioning P. The property P is said to be generic.

For any point x ∈ Rd and set M ⊂ Rd, consider the subset

Dx(M) = {‖y − x‖−1(y − x) : y ∈M \ {x}}

of the unit sphere Sd−1 in Rd.
We say that C ∈ C looks dense from x ∈ C if for any neighbourhood N of x, the set

Dx(N ∩ C) is dense in Sd−1 [17]. In particular, C ∈ C is said to look full from x ∈ C
if for any neighbourhood N of x, the set Dx(N ∩ C) equals Sd−1. We also say that
C ∈ C looks at least half-dense from x ∈ C if there is a 0-half-space H+ such that for
any neighbourhood N of x, the set Dx(N ∩C) is dense in Sd−1∩H+ [17]. In particular,
C ∈ C is said to look at least half-full from x ∈ C if there is a 0-half-space H+ such that
for any neighbourhood N of x, the set Dx(N ∩ C) includes Sd−1 ∩H+.

For a convex body K, we denote by extK its set of extreme points, as usual. For a
simplicially convex body K, any bounded component of Rd \K will be called a hole of
K.

For a d-simplicially convex body K, we call bdconvK the surface of K. Clearly,
K ⊃ extconvK. If K = Sd(C), then C ⊃ extconvK too, and convC = convK,
whence the surface of K also equals bdconvC. The surface of K is included in K,
because each of its points lies by Carathéodory’s Theorem in a d-simplex ∆ with vertices
in C, more precisely in a (d− 1)-dimensional face of ∆, because int∆ ⊂ intconvK.

The open ball in Rd of centre x and radius r is denoted by B(x, r). Similarly, the
open ball in C of centre C and radius r is denoted by B(C, r).

Auxiliary results

We shall make use of the following five lemmas. The first four are known results, obtained
by A. Wieacker and the author.
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Lemma 1 ([9]). Each hole of a d-simplicially convex body K is the interior of a (d-
dimensional) polytope, whose boundary is included in K.

Note that holes of other simplicially convex bodies might not be interiors of polytopes.
The boundary of a bounded circular cone in R3, which is 2-simplicially convex, may serve
as an example.

Lemma 2 ([17]). Most elements of C look at least half-dense from any of their points.

Lemma 3 ([8]). A typical set C ∈ C contains no d+ 1 affinely dependent points.

Recall that for any compact convex set K with
∫
K 6= ∅, if x ∈ bdK, then there

exists a closed half-space H+ ⊃ K with x ∈ bdH+; H+ is called supporting half-space
of K at x. If the supporting half-space at each point of bdK is unique, then K is said to
be smooth.

The following corollary of Lemma 2 was found by Wieacker long before [17] ap-
peared.

Lemma 4 ([8]). For most C ∈ C, convC is smooth.

A facet of a hole H means a (d− 1)-dimensional face of H .

Lemma 5. For typical C ∈ C, each facet of any hole of Sd(C) lies in a single (d − 1)-
simplex with vertices in C.

Proof. Let C be typical and F be a facet of a hole of Sd(C). Let x be in the relative
interior of F . If x lies in two different (d − 1)-simplices with vertices in C, then these
are both included in the hyperplane H of F , and it follows that there exist at least d + 1
points in C ∩H , which contradicts Lemma 3.

Results

IfC is finite, then Sd(C) has finitely many holes, and equals the union of their boundaries.
Therefore it is nowhere dense and of zero (d-dimensional) Lebesgue measure. Is this true
for many C’s?

Theorem 1. For most C ∈ C, Sd(C) is nowhere dense and has measure zero.

Proof. Let C∗, Cε be the subsets of C consisting of all compact sets C such that Sd(C)
includes some (non-degenerate) ball or has non-zero outer measure, respectively includes
a ball of radius ε or has outer measure at least ε. Then C∗ =

⋃∞
n=1 C1/n, and C∗ is

precisely the subset of C of all compact sets C for which Sd(C) is not nowhere dense or
is of positive outer measure. We prove the theorem by showing that each C1/n is nowhere
dense.
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Let C0 be compact. Let F be a finite set approximating C0. Since Sd(F ) is a finite
union of (d − 1)-simplices, it contains no ball and has measure zero. For some small ε,
Sd(F + B(0, ε)) too contains no ball of radius 1/n and has measure less than 1/n. So,
for every C ∈ B(F, ε), we have C /∈ C1/n. Hence, C1/n is nowhere dense, and the proof
is finished.

Corollary. Let 1 ≤ ` ≤ d. For most C ∈ C, S`(C) is nowhere dense and has measure
zero.

For d = 1, this is well-known. (One finds stronger results in [3], [4], [14].)

Theorem 2. For most C ∈ C, Sd(C) has infinitely many holes.

Proof. Let C∗ = {C ∈ C : Sd(C) has finitely many holes} and let Cn = {C ∈ C :
Sd(C) has at most n holes}. Again, C∗ =

⋃∞
n=1 C1/n, and we shall show that Cn is

nowhere dense.
For C ∈ C, take a finite set F in general position (i.e. without any d + 1 affinely

dependent points in it) approximating C. If cardF is sufficiently large, then Sd(F ) has
more than n holes. The combinatorial structure of Sd(F ) — including the components of
its complement — does not change if the points of F are gently moved. More precisely,
for some ε > 0, if the distance from the old position of any point in F to its new position
is less than ε, then the number of holes remains exactly the same. That is, Sd(F ′) has the
same number of holes as F if cardF ′ = cardF and F ′ ∈ B(F, ε). Now, replacing the
point x of F by any nonempty set in B(x, ε) cannot decrease the number of holes. Hence
B(F, ε) ∩ Cn = ∅, which ends the proof.

By Theorem 1, for most C ∈ C, Sd(C) coincides with its boundary. However, the
following holds.

Theorem 3. For most C ∈ C, most points of Sd(C) lie neither on the boundary of any
hole, nor on the surface of Sd(C).

Proof. Let C ∈ C. Of course, the family of all holes of Sd(C) is at most countable.
Since, by Lemma 1, the boundary bdH of every hole H consists of finitely many (d −
1)-dimensional polytopes, to prove the theorem it will suffice to show that every such
polytope and the surface S of Sd(C) are nowhere dense in Sd(C), in case C is typical.

Now, let C be typical, and let P be such a (d− 1)-dimensional polytope, a facet of a
hole H . Let p ∈ P ∪ S and ε > 0. We have to find a ball in Sd(C), included in B(p, ε)
and disjoint from P ∪ S.

Let s1, s2, . . . , sd ∈ C satisfy p ∈ Sd({s1, s2, . . . , sd}). For small ε, consider the balls
B(s1, ε), B(s2, ε), . . . , B(sd, ε). In case p ∈ P , let Σ be the open half-space includingH
with P ⊂ bdΣ. In case p ∈ S, let Σ be the open half-space disjoint from convSd(C) =
convC, with p ∈ bdΣ. The latter is unique, because convC is smooth by Lemma 4. (If
p ∈ P ∩ S, one would define Σ either way, but in fact P ∩ S = ∅ by Theorem 7.) For
small ε, no B(si, ε)∩Σ meets C, otherwise Sd(C) would contain points in H or outside
convC. By Lemma 2, the interior of each B(si, ε) \ Σ meets C. Thus, Sd(C) meets
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B(p, ε) \ Σ. Any point of Sd(C) ∩ B(p, ε) \ Σ is the centre of a ball in Sd(C) disjoint
from P ∪ S. This ends the proof.

In [17] it is shown that mostC ∈ C look dense from most of their points. This property
is inherited in a stronger form by the d-simplicially convex bodies.

Theorem 4. For a typical C ∈ C, Sd(C) looks full from most of its points.

Proof. Take a typical C ∈ C and a typical x ∈ Sd(C). Suppose Sd(C) does not look
full from x. Then, for some line-segment xy, Sd(C) ∩ xy = {x}. The component of
Rd \ Sd(C) including xy \ {x} either is a hole or is the complement of convC. Then x is
on the boundary of a hole or on the surface, contradicting Theorem 3.

Theorem 5. For most C ∈ C, no point of C lies on the boundary of any hole of Sd(C).

Proof. Let C be typical, and suppose x ∈ C ∩ bdH , where H is a hole of Sd(C).
By Lemma 2, C looks half-dense from x, i.e. there exists a 0-half-space H+ such that
Dx(C ∩N) is dense in Sd−1 ∩H+ for any neighbourhood N of x. Then the half-space
H− = −H+ +x must be supporting H . Some facet of H is not in bdH−. By Lemma 5,
this facet is included in a unique simplex Sd({s1, s2, . . . , sd}) with s1, s2, . . . , sd ∈ C.
Then some vertex si of Sd({s1, s2, . . . , sd}) lies in intH−. It follows that, for some
neighbourhood N and point y ∈ C ∩ (H+ + x) ∩ N , the line-segment ysi meets H . A
contradiction is reached.

Theorem 6. IfC ∈ C is typical then S`(C) looks at least half-dense from any of its points
(1 ≤ ` ≤ d).

Proof. For ` = 1, we apply Lemma 2. Now let 2 ≤ ` ≤ d. Let C ∈ C be typical
and consider an arbitrary point x ∈ S`(C). Take s1, s2, . . . , s` ∈ C such that x ∈
S`({s1, s2, . . . , s`}). By Lemma 2, C looks at least half-dense from s1. Then, for some
0-half-space H+ and for any ε > 0, the set Ds1(C ∩ B(s1, ε)) is dense in Sd−1 ∩H+.
We have x = Σ`

i=1λisi for suitable non-negative coefficients λi with Σ`
i=1λi = 1.

The homothety h with centre (Σ`
i=2λi)

−1Σ`
i=2λisi and ratio λ1 transforms s1 into

x. It also transforms every point p of B(s1, ε) into a point h(p) of B(x, λ1ε) such that
h(p)−x = λ1(p− s1). Thus Dx((λ1(C− s1) +x)∩B(x, λ1ε)) is dense in Sd−1 ∩H+.
Since λ1(C − s1) + x is included in S`(C), the latter looks at least half-dense from x.

Theorem 7. For most C ∈ C, no pair of holes of Sd(C) have common boundary points,
and no boundary point of any hole of Sd(C) lies on the surface of Sd(C).

Proof. To prove the first part, suppose on the contrary that H and G are two holes of
Sd(C), where C is typical, and x ∈ bdH ∩ bdG. Consider a hyperplane Π through x
separating intH from intG. Remember that both H and G are polytopes, by Lemma 1.
Rotate Π if necessary, until it contains a facet F of H or G, say H . By Lemma 5, F is
included in a unique (d − 1)-dimensional simplex S with vertices in C. So x ∈ S. By
Lemma 2, C looks at least half-dense from s1 ∈ V , where V is the set of vertices of
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S. Hence, for some 0-half-space H+ and any ε > 0, the set Ds1(C ∩ B(xε)) is dense
in Sd−1 ∩ H+. Now, as Sd((C ∩ (H+ + x) ∩ B(x, ε)) ∪ V ) is disjoint from H , the
hyperplanes bdH+ and Π must be parallel and the exterior normal unit vector of H at
any relatively interior point of F must lie in H+. But then

G ∩ Sd((C ∩ (H+ + x) ∩B(x, ε)) ∪ V ) 6= ∅,

and a contradiction is obtained (since C ∩ (H+ + x) ∩B(x, ε) ⊂ C and G is a hole).
For the second part of the statement, suppose on the contrary that H is a hole of

Sd(C), S is the surface of Sd(C), and x ∈ S ∩ bdH . By Theorem 6, Sd(C) looks
at least half-dense from x. Hence, for some 0-half-space H+ and any ε > 0, the set
Dx(Sd(C) ∩ B(x, ε)) is dense in Sd−1 ∩H+. Since x ∈ S, H+ must be a translate of
the unique (by Lemma 4) half-space supporting convSd(C) at x. Since H is a polytope,
x ∈ bdH and H ⊂ H+, it follows that Sd(C) meets H , and a contradiction is obtained.

Theorem 8. If C ∈ C is typical then Sd(C) looks at least half-full from any of its points.

Proof. Let x ∈ Sd(C). If x neither is a boundary point for any hole, nor belongs to the
surface S of Sd(C), then Sd(C) looks full from x, because for any y 6= x, if xy \ {x}
lies in a component of the complement of Sd(C), then x is in the boundary of a hole or
in S. Suppose now x is a boundary point of a hole H . Consider a supporting half-space
H+ of H at x. Then, for any point y /∈ {x} ∪ intH+, the set xy \ {x} meets Sd(C).
Indeed, if this is not the case, then xy \ {x} lies in a component of the complement of
Sd(C), whence x is in the boundary of some hole different from H , or belongs to S; this
contradicts Theorem 7. The same reasoning applies when x ∈ S.
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