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A convex set is F-convex if every pair of points in the set lie in a right triangle included in the
set.

We characterize F-convex sets, find some classes of F-convex sets, investigate F-convexity for
cones and cylinders, and find out that most convex bodies are F-convex.

On our way, we also describe the curvature at the endpoints of diameters of most convex bodies.
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Introduction

At the 1974 Convexity meeting in Oberwolfach, the author proposed the inves-
tigation of various cases of the following convexity type concept: Given a family
F of sets in a certain space X, a set M ⊂ X is called F -convex if for any pair
of distinct points x, y ∈ M there is a set F ∈ F such that x, y ∈ F and F ⊂ M .
This appeared explicitly as a problem.

Obviously, affine linearity, arc-wise connectedness, usual convexity are all exam-
ples of F -convexity (for suitably chosen families F).

Blind, Valette and the author [1], and later Böröczky Jr. [2], investigated the
rectangular convexity, the case when F contains all non-degenerate rectangles,
but a conjectured characterization remained unproved.

By taking as F the family of all convex hulls of surfaces obtained by rotating a
circular arc (smaller than a half-circle) around the line through its endpoints, we
obtain the usual strict convexity. This family F has been used for a characteri-
zation of convexity in [7].

Among the more recent investigations, let us mention Magazanik and Perles’
staircase connectedness, where F consists of a special kind of polygonal arcs [6].

∗This work was partly supported by a grant of the Roumanian National Authority for Scientific
Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-2011-3-0533.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



254 T. Zamfirescu / Right Convexity

Here we take the family F to be that of all right triangles in the Hilbert space
H of dimension at least 2. A right triangle is the convex hull of 3 distinct points
x, y, z ∈ H with ∠xyz = π/2. Our F -convex sets are all convex, because so
are the elements of F . In fact this F -convexity is a special case of F ′-convexity,
where F ′ is the family of all triples {x, y, z} ⊂ H such that ∠xyz = π/2. The
(interesting) study of F ′-convexity includes a more discrete geometric research,
while F -convexity, called right convexity, is fully embedded in convex geometry.

The convex sets considered here shall always be closed.

A convex body is a closed bounded convex set of dimension at least 2.

For a convex body K, we denote by SK the circumsphere of K, i.e. the boundary
of the smallest (unique) ball inH includingK, and by bdK the relative boundary
of K.

Many convex bodies are F -convex, i.e., rightly convex, many are not. So, in IRd,
all (right bounded) cylinders are F -convex, while all ellipsoids with distinct axis
lengths are not. Of course, rectangular convexity implies right convexity (but not
conversely).

We prove here that further classes of convex bodies, including all convex bodies of
constant width, are F -convex, but leave the pleasure of finding more such classes
to the reader. Moreover, we show that, in the sense of Baire categories, most
convex bodies in IRd are F -convex.

A line-segment of maximal length in a convex set K is called a diameter of K.
Let B be the set of all convex bodies in H admitting a diameter. If H = IRd, B
coincides with the space of all convex bodies.

Characterizations

We start with a characterization of F -convex sets among the convex bodies from
B.

Theorem 1. A convex body K ∈ B is rightly convex if and only if some diameter

σ of K is seen from some point in K \ σ under a right angle.

Proof. Assume the condition in the statement is verified. Let x, y ∈ K. The
condition in the definition of F -convexity is obviously satisfied at x, y if xy = σ.

If xy 6= σ, let σ = uv. Let w ∈ K be the point satisfying ∠uwv = π/2. Either uv
is another diameter of the hypersphere S of diameter xy, or at least one of the
two endpoints of uv, say v, lies outside S.

In the first case ∠xuy = π/2. In the second case, if x, y, v are not collinear, xv∪yv
meets S in at least three points, x, y, and a third point z. Thus, ∠xzy = π/2.
If x, y, v are collinear, for example y lies between x and v, then the hyperplane
through y orthogonal onto xy meets conv{x, u, v, w} ⊂ K along a line-segment
or a triangle, where we can choose a point z 6= y. Now, ∠xyz = π/2, and K is
F -convex.
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Conversely, if K is F -convex and σ is any diameter of K, the existence of a right
triangle in K including σ is only possible if σ is its hypothenuse.

The following simple but useful sufficient condition for F -convexity follows from
Theorem 1.

Corollary 2. Let K be a convex body. If there exists a diameter σ of K and a

rightly convex set L such that σ ⊂ L ⊂ K, then K is rightly convex too.

Theorem 3. Let dimH < ∞. A compact convex set K ⊂ H is a rightly convex

body if and only if card(K ∩ SK) ≥ 3.

Proof. It is well-known that dimK ≥ 1 implies card(K ∩ SK) ≥ 2.

Suppose card(K ∩SK) = 2. Put K ∩SK = {x, y}. Then xy is the single common
diameter of K and SK , and for no third point z ∈ K, ∠xzy = π/2. Thus, K is
not F -convex.

Conversely, first remark that K is a convex body if dimK ≥ 2, and this is indeed
guaranteed by the assumption that card(K ∩ SK) ≥ 3. Now suppose K is not
F -convex. By Theorem 1, for any diameter xy of K and any point z ∈ K \ xy,
∠xzy 6= π/2. This implies that K∩S = {x, y}, where S is the sphere of diameter
xy. Then S = SK and card(K ∩ SK) = 2.

Convex bodies of constant width and other classes of rightly convex

bodies

In [12] we described the curvature aspect at diametrally opposite points of a
planar convex body C of constant width w. Let ρi(x) and ρs(x) denote the lower
and upper curvature radii of bdC at the point x ∈ bdC in counterclockwise
direction on bdC (for a definition of the lower and upper curvature radii, see [3]).
What happens is that, for any pair of diametrally opposite points x, y ∈ bdC,

ρi(x) + ρs(y) = w.

This yields the existence of a third point z ∈ C at distance w/2 from the midpoint
of xy, but a proof requires several lines. Once proven, this in turn would suffice
for C to be rightly convex. But that this is indeed the case follows more elegantly
from the next result, valid in any dimension.

Theorem 4. Every convex body with more than one diameter is rightly convex.

Proof. Let xy be a diameter of the convex body K. Let uv be a diameter of
K distinct from xy. Then either uv is another diameter of the hypersphere S of
diameter xy, or at least one of the two endpoints of uv, say v, lies outside S. In
both cases xv ∪ yv meets S in at least three points, x, y, and another point z.
Thus, ∠xzy = π/2. By Theorem 1, K is F -convex.

Since any pair of boundary points of a convex body C of constant width admitting
opposite unit normal vectors determine a diameter of C, we get the following.
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Corollary 5. Every convex body of constant width is rightly convex.

Theorem 6. Each convex body from B, symmetric with respect to a linear sub-

space A ⊂ H, with no diameter in A, is rightly convex.

Proof. The image of any diameter of the convex body through the existing
symmetry is another diameter. Now, the F -convexity follows from Theorem
4.

Rightly convex cones and cylinders

A cone P ⊂ H is the convex hull of the union of a convex body B of codimension
1, called base, with a point p /∈ affB called apex.

P is called a right cone if the orthogonal projection p′ of p onto affB belongs to
B.

The distance d(x,M) from a point x to a set M ⊂ H equals infy∈M‖x− y‖. Set
diamM = supy,z∈M‖y − z‖. (For M ∈ B, diamM is the length of a diameter of
M .)

The height of a cone of apex p and base B is d(p, affB).

Theorem 7. A right cone is rightly convex if it has a rightly convex base or its

height is at least diamB/2.

Proof. Let P be a right cone with apex p, base B and height h.

Choose arbitrarily x, y ∈ P .

Assume first that B is F -convex.

Case I. x, y ∈ B. The existence of a right triangle containing x, y is now assumed.

Case II. x ∈ B, y ∈ P \ B. We show that there exists a right triangle in P
containing both x and y. Indeed, if x 6= y′, where y′ is the orthogonal projection
of y onto affB, such a triangle is xy′y. If x = y′, a suitable triangle is yxz, where
z can be arbitrarily chosen in B \ {x}.

Case III. x, y ∈ P \B. Assume without loss of generality that d(x,B) ≤ d(y,B).
The hyperplane through x parallel to affB intersects P along a convex body B′.
Since B′ is similar to B and P ′ = conv({p} ∪ B′) is similar to P , we arrive at
Case I or II with respect to P ′ and B′ in place of P and B.

Assume now that h ≥ diamB/2.

We have again the same three cases as before. Only Case I needs a different
treatment. We have to show that, for any pair of points x, y ∈ B, there exists a
right triangle in P containing both x and y.

Let S ⊂ H be the hypersphere of diameter xy. Since

∥

∥

∥
p−

x+ y

2

∥

∥

∥
≥ d(p,B) = h ≥ diamB/2 ≥ ‖x− y‖/2,
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p lies outside S or on it. Then px ∪ py intersects S \ {x, y}, and for z in this
intersection we have ∠xzy = π/2.

Theorem 8. Let the cone P ⊂ H have apex p, base B, and height h. Assume

that B is smooth at a ∈ bdB and pa is a diameter of P . If the upper radius of

curvature ρτs(a) of bdB at a in some tangent direction τ satisfies

ρτs(a) >
1

2

√

(diamP )2 − h2,

then P is rightly convex.

Proof. Let p′ be the orthogonal projection of p on affB, and put

p′′ =
p′ + a

2
, r = ‖p′′ − a‖.

The normal line of bdB at a passes through p′. Obviously, r = 1

2

√

(diamP )2 − h2.
The condition ρτs(a) > r implies that in any neighbourhood of a there are points
of bdB outside the sphere of centre p′′ and radius r. Let x be any such point;
then xa meets the sphere in some point y and ∠p′ya = π/2, whence ∠pya = π/2
too.

Now the conclusion follows from Theorem 1.

A cylinder is a set

Z = B + 0v = {x+ λv : x ∈ B, λ ∈ [0, 1]} ⊂ H,

where B is a convex body of codimension 1 containing the origin 0 and v /∈ affB.
The sets B and B+v are called bases of Z, while the distance d(v, affB) is called
height of Z.

Z is said to be a right cylinder if 〈v, w〉 = 0 for all w ∈ B.

Every right cylinder is obviously rightly convex. Regarding the other cylinders,
we have the following result similar to Theorem 8.

Theorem 9. Let the cylinder Z ⊂ H have bases B and B + v, and height h.

Assume that Z has a diameter ab. Then its endpoints belong to the bases, say

a ∈ B, b ∈ B + v. Also, assume that B is smooth at a. If the upper radius of

curvature ρτs(a) of bdB at a in some tangent direction τ satisfies

ρτs(a) >
1

2

√

(diamZ)2 − h2,

then Z is rightly convex.

Proof. The cone conv({b}∪B) is F -convex because the hypotheses of Theorem
8 are verified for that cone. Now, by Corollary 2, Z is F -convex too.
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Unbounded convex sets

So far, we could detect no great similarity between rectangular and right con-
vexities. Also regarding unbounded convex sets, right triangular convexity and
rectangular convexity behave very differently: Every d-dimensional unbounded
closed convex set in IRd is rightly convex. Compare this to Theorems 1 and 6 in
[1].

Theorem 10. Every unbounded closed convex set in H, of dimension at least 2,
is rightly convex.

Proof. Let C ⊂ H be an unbounded closed convex set with dimC ≥ 2. Consider
the vector v in its recession cone.

Let now x, y ∈ C.

If v and x− y are linearly dependent, for example x− y = αv with α > 0, then
the half-line through x starting at y lies in C, and x+ w ∈ C for some vector w
orthogonal to v, because dimC ≥ 2.

If v and x− y are not linearly dependent, some diagonal of the parallelogram of
vertices x, y, x + v, y + v ∈ C, say x(y + v), is not smaller than the other one.
Then the orthogonal projection y′ of y onto x(y+ v) lies in C, and ∠xy′y = π/2.

Right convexity of most convex bodies

In this last section, H = IRd. Consider the space of all continua in IRd, and
its subspace K of all d-dimensional convex bodies. Both spaces, endowed with
the Pompeiu-Hausdorff distance, are Baire spaces. As usual, we say that most

elements of a Baire space enjoy property P if those elements not enjoying P form
a subset of first Baire category.

The generic curvature behaviour of convex surfaces, i.e., boundaries of convex
bodies, was described in [8], [9], [11].

For a convex body K to be rightly convex it suffices that bdK has upper radius
of curvature larger than diamK/2 at some endpoint of some diameter, in some
tangent direction, by Theorem 1.

On most convex bodies, at most points, the lower curvature in any direction is
0. However, this cannot happen at the endpoints of a diameter. What it does
happen is described in the next theorem.

Theorem 11. Most convex bodies in IRd are smooth and have a single diameter.

At both endpoints of that diameter, in some tangent direction, the upper curvature

is ∞ and the lower one equals (diamK)−1.

Proof. A direction or a line-segment will be called horizontal, respectively ver-

tical, if it is parallel, respectively orthogonal, to a fixed (2-dimensional) plane.

Let Kn be the set of convex bodies admitting (at least) two diameters at Hausdorff
distance at least 1/n from one another. This set is closed in K.
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A convex body C can be approximated by a polytope P , i.e. any neighbourhood
of C in K contains a polytope P . Let xy be a diameter of P . By gently extending
xy beyond y to a line segment xy′, we obtain a polytope P ′ = conv(P ∪ {y′})
with the single diameter xy′ and also approximating C. As P ′ /∈ Kn, we obtain
that Kn is nowhere dense, so most convex bodies have a single diameter.

Let now xx∗ be a diameter of C ∈ K, and let the direction τ be orthogonal to
xx∗. Consider the points xn, x

∗

n ∈ xx∗ such that ‖x − xn‖ = ‖x∗ − x∗

n‖ = 1/n,
and the half-plane Π with xx∗ on its boundary and x+ τ ∈ Π.

Let An ⊂ Π be the arc of length 1/n of the circle of centre x∗

n from x to yn. The
radius is diamC − 1/n. Let A∗

n ⊂ Π be the analogous arc of same length 1/n, of
the circle of centre xn from x∗ to y∗n. The two arcs are congruent.

Let’s say that C has the (n)-property if for every diameter xx∗ of C and for any
horizontal direction τ orthogonal to xx∗, either An or A∗

n does not meet intC.

We prove that the set K′

n of those C ∈ K which enjoy the (n)-property is nowhere
dense in K.

First, it is easily seen that each K′

n is closed in K. Then, let C ∈ K. Approximate
it by a polytope P having a diameter xx∗. Choose a horizontal direction τ
orthogonal to xx∗. Choose ε > 0 very small (compared with 1/n), and the points
y ∈ x∗(x + ετ) and y∗ ∈ x(x∗ + ετ) such that ‖y − x∗‖ = ‖y∗ − x‖ = ‖x − x∗‖.
Then P ′ = conv(P ∪{y}∪ {y∗}) has not the (n)-property, whence K′

n is nowhere
dense.

It is immediately seen that those convex bodies which admit a vertical diameter
form a nowhere dense subset of K.

In conclusion, most C ∈ K are smooth (see [5], [4]), have a single diameter xx∗

which is not vertical, and also have the (n)-property for no natural number n.
This means that for at least one of the two horizontal tangent directions τ,−τ at
x, say for τ ,

ρτs(x) > diamC − 1/n and ρτs(x
∗) > diamC − 1/n

for infinitely many n’s, yielding ρτs(x) = ρτs(x
∗) = diamC.

By Theorem 1 in [8], for most C ∈ K, at every point z ∈ bdC and for every
tangent direction τ , ρτi (z) = 0 or ρτs(z) = ∞. It follows that, at the endpoints x, x∗

of the unique diameter and for the determined direction τ , ρτi (x) = ρτi (x
∗) = 0.

Thus, for most convex bodies, the upper radius of curvature at both endpoints of
the (unique) diameter equals diamK in some tangent direction, which implies,
by Theorem 1, that they are rightly convex. But we are not satisfied with this.
The following is namely true.

Theorem 12. The set of all convex bodies in IRd which are not rightly convex is

nowhere dense.

Proof. We shall show that the set C of those K ∈ K, for which diamK =
diamSK , is nowhere dense in K.



260 T. Zamfirescu / Right Convexity

First of all, it is a routine matter to verify that C is closed in K. Now, let
C ∈ C. If x, y are diametrally opposite in C, then the circumsphere SC of C must
admit xy as a diameter. Let ε > 0. Choose a point a outside SC but inside the
sphere of centre y and radius diamC, at distance from x less than ε. Clearly,
C ′ = conv({a}∪C) has the same diameter xy as C, but a different circumsphere.
Also,

ρ(C,C ′) < ε.

Thus, C is nowhere dense in K. Since, by Theorem 3, all convex bodies which are
not F -convex belong to C (but not conversely), the proof is finished.

The weaker assertion that most convex bodies are F -convex also follows from
Theorem 3 in [10] together with our Theorem 3.

What is the behaviour of continua and of compact starshaped sets? Since only
few continua are starshaped sets, and even fewer are convex, we cannot expect
many of them to be F -convex. However, concerning F ′-convexity, things may
become more interesting.

We leave the pleasure of investigating this to the reader. (For a while.)
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