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1 Introduction

A simple undirected graph 7" with vertices 1,2, ...,n is called a Toeplitz graph if
its adjacency matrix A(T) is Toeplitz. A Toeplitz matrix is an (n X n) symmetric
matrix which has constant values along all diagonals parallel to the main diagonal.
Therefore, a Toeplitz graph T is uniquely defined by the first row of A(T), a (0-1)

sequence. If the 1’s in that sequence are placed at positions 1 +#;, 1 +1#5,..., 1 +#
withl <t <t <--- <tx <n,wemay simply write T = T, (t,t5,...,1), two
vertices x, y being connected by an edge iff |x — y| € {t1,t2, ..., %}.

Let G be a graph of order n. It is called Hamiltonian if it contains a cycle of
order n. It is called traceable, if it contains a path of order n; that path is then called
a Hamiltonian path of G. The graph G is said to be Hamiltonian connected if for
any pair of distinct vertices u and v of G, there exists a Hamiltonian path from u to v.
The property of being Hamiltonian connected is stronger than being Hamiltonian.
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References [1-4] contain results about connectivity, bipartiteness, planarity, and
colorability of Toeplitz graphs. Some Hamiltonian properties of undirected Toeplitz
graphs have been investigated in [1] and [5], while the directed case was studied in
[6-8]. In [9], S. Malik and T. Zamfirescu started the investigation of the Hamiltonian
connectedness of directed Toeplitz graphs. For the indirected case, in [9] it is
proven that T, (1,2) is Hamiltonian connected only for n = 3, while T, (1,2, s)
is Hamiltonian connected for all values of n and s. It will become clear that,
concerning k, the first relevant case is k = 3. In this paper, we are completing
the picture of Hamiltonian connectedness of Toeplitz graphs, more precisely of
T.{t1,. 1), T,,(1,3,s) and T,,(1,4, s).

Let T be a Toeplitz graph and p, g be two vertices of T, such that p < ¢g. By
P,, we mean a path from p to p + 1 containing all vertices in {p,p + 1, p +
2,...,4—2,9—1,q},and by P, , we mean a path from g to ¢ — 1, containing the
same vertices. The existence of P, , or P, , is not guaranteed.

We start with a few simple results.

Theorem 1. Forn # 3, T,{t, t2) is not Hamiltonian connected.

Proof. Assume T = T,(t;,1;) for n # 3 is Hamiltonian connected. Then there
exists a Hamiltonian path from #; 4+ 1 to t, + 1. But the path from #; + 1 to #; + 1
containing 1 is unique and is of length 2. This leads to a contradiction. Hence, T is

not Hamiltonian connected. ad
Theorem 2. The Toeplitz graph T, (t|,t2,t3, ..., t;) is not Hamiltonian connected
ifty, t, t3, ..., ty are all odd.

Proof. A bipartite graph is not Hamiltonian connected, and if #,, 75, t3, ..., # are
all odd, then the graph T,(t|, 1,13, ..., I) is bipartite. O

Corollary. T,(1,3,s) is not Hamiltonian connected, when s is odd .

Theorem 3. If both n and t are odd, then T,(1,t,n — 1) is not Hamiltonian
connected.

Proof. Let, fort odd, T = T,(1,¢t,n — 1), where n > t + 2 is an odd integer.
Assume that 7' is Hamiltonian connected, then there exists a Hamiltonian path H
between two even vertices x and y of 7. The path H either contains the edge (1, )
or not.

If H contains the edge (1,n), we can contract it to a single vertex, because
both vertices of the edge have the same parity (both are odd). After contraction,
the resulting path H " is of even order, and the number of even vertices is equal to
the number of odd vertices. But the end vertices of H are even, which leads to a
contradiction.

Next, we assume that H does not contain the edge (1,n). But T without the
edge (1,n) becomes T,(1,¢), which is a bipartite graph. Again, H cannot be a
Hamiltonian path of 7', and this completes the proof. O

Lemma 1. [f n is even, then T,(1,3) admits a Hamiltonian path from 1 to 2 and,
by symmetry, another one fromn ton — 1.



Hamiltonian Connectedness of Toeplitz Graphs 137

Fig. 1 1 2 n-1n

Fig. 2

Fig. 3
y

Proof. See Fig. 1, for a Hamiltonian path in T = T, (1, 3), from vertex 1 to vertex
2, for even n > 4. A similar Hamiltonian path from vertex n to vertex n — 1 exists
in T', due to the symmetry of Toeplitz graphs. This completes the proof. O

Lemma 2. Let p, q be two distinct vertices of T,(1,3). If ¢ — p is odd then paths
P, and P, , exist in T, (1, 3).

Proof. Apply Lemma 1 to the subgraph of 7, (1, 3) spanned by p,p +1,...q. O

Theorem 4. T,(1, 3, s) is Hamiltonian connected for alln > s + 2, if s is an even
integer.

Proof. Let T = T,(1,3,s) be the Toeplitz graph, where n > s + 2. Then, there
exist paths P,, and P, , in T, whenever ¢ — p is odd for p < ¢, by Lemma 2.
Now, by using such paths of T', we prove that for any two distinct vertices x and y
of T, there exists a Hamiltonian path from x to y. Take x < y. We split our proof
into two main cases:

Case 1. n is even.
The following four subcases arise:

(i) x iseven, y is odd.
In this case, P, and Py, exist in T, and, with the help of these two paths,
we obtain a Hamiltonian path (Px,l,x +2,x+1,...,y—1,y—2, Py,n) in
T from x to y; see Fig. 2.

(i) x isodd, y is even.
If y # x 4 1, then a possible Hamiltonian path of 7 from x to y,
(Pet11,x +2,..., Py_1,), is shown in Fig. 3.

When y = x+1, then for x = 1 or x = n—1, we use the path of Lemma 1,

and for other values of x, we consider the path (x, Pyy2,, Px—1.1,)); see
Fig. 4.
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(iii) x and y are even.
If x > s, then a Hamiltonian path from x to y is (x, x — 1, Py—s1, x — 5 +
L ...,x=2,x+1,x+2,...,y=2, P,_1,) (see Fig.5).
If x < s, then we have four subcases to discuss:

(a) For y > s + 2, we consider a Hamiltonian path (x, x — 1, x —
2,...,2, 1, Paya g1, s+ 3, ...,y —2, Py_1,) between x and y; see
Fig. 6.

(b) When y = s+ 2 # n, then a possible Hamiltonian path joining x and y is
(x,x=1,x=2,...,2, 1, s+ 1, Pyy14, Psx41, s +2 = y); see Fig. 7.

(¢) If y = s 4+ 2 = n, then a Hamiltonian path from x to y is (x, x — 1, x —
2,...,3,2,1,Pyx+1); see Fig. 8.

(d) Finally, for y < s. A Hamiltonian path joining x and y is (x, x — 1, x —
2, 2, L P, s — 1,8, =3, 5 =2,...,y+ 1,y +2,Pyxq1)
(see Fig.9).

(iv) xisodd, y is odd.

This case is symmetric to case (iii). (Denote vertex i by n + 1 —1i.)
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Case 2. n is odd.
Again, we consider the following subcases:

(i) x and y are of different parity.
First, we assume that y < s. Then a Hamiltonian path joining x and y is
(x,x—=1,x=2,...,2,1, Pg, s=1, ..., ¥y +2,Pyy1+1) (see Fig. 10).
If y = s, then a Hamiltonian path joining x and y is (x, x —
1,...,2, 1, s+ 1, Py 41, Ps+2.4, y) (see Fig. 11).
Next suppose that x < sand y > s + 1.

(a) If x is even, then a Hamiltonian path joining x and y is (x, x — 1, x —
2,...,2, 1, Pgyo 1, s+ 3, ..., y—2,P,,); see Fig. 12.

(b) If x is odd, then a Hamiltonian path (x,x — 1,...,1, Ps41v41,5 +
3,....y—1,y—=2,P,,),joining x and y, is shown in Fig. 13.

When 2 < x < s and y = s + 1, we consider a Hamiltonian path
(e,x—1,...,4,1,2,3, Psys4, Ps42c41) from x to y (see Fig. 14).
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If x = 2and y = s + 1, then a Hamiltonian path joining x and y is

(x=2,1, P3.y—l, Poyon, ).
Finally, here we consider the case x > s.

(a) If x is even and y # x + 1, then a Hamiltonian path from x to y is
(x,x=1,...,x=s+ 1L, P, x+1,x+2,...,y=2,P, 1,);see
Fig. 15.

If y = x + 1, then a Hamiltonian path from x to y is (x, Px42.4, X —
Lx—=2,...,y —=s+2,Py sy11,) (see Fig. 16).

(b) If x is odd, then a Hamiltonian path from x to y is (x, Py—s4+1.1, X —5 +

2, x—1L,x+2,x+1,...,y—1,y =2, P, ,); see Fig. 17.

(ii) x and y are even.
The following subcases arise:
Ifx=2andy >s+2,weuse (2,1,s+1,s,...,4,3,s+3,5s+2,5s +
5...,y—1,y-2,y+1, Py,), the Hamiltonian path between x and y (see
Fig. 18).
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When 4 < x < sand y > s+ 2, then a Hamiltonian path joining x and y
is(,x+1,...,s+ 1L, 1, P q1,54+3,5s+2,5+5,...,y—1,y=2,P,,),
shown in Fig. 19.

If x > s,wehave (x,x + 1, Py—s42.1, Pros42x—1, X+ 3, x+2,...,y—
1,y —2, Py ,), the Hamiltonian path from x to y (see Fig. 20).

If y < s, the path from x to y as desired is (x,x — 1,x —
4, x —5...,4,1,s +1,Ps42,,3,2,56,....,x —3,x —2,x + 1,x +
2,...,y —2,P, 1), when x = 0O(mod4), and (x,x — L,x — 4,x —
5,...,6,52,3, Psyoy,s+1,1,4,7,8, ..., x=3,x=2,x+1,x+2,...,y—
2, P, 1), when x = 2(mod 4); see also Fig. 21.
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(iii) x and y are odd.
In this simple case a Hamiltonian path from x to y is (Py41.1,X +
2,...,y—=3,y—=2,Py, ,) (see Fig.22).
Now the proof is complete.
a

Lemma 3. Forn = 5andalln > 7, T,(1,4) admits a Hamiltonian path from 1 to
2 and, by symmetry, another one fromn ton — 1.

Proof. T,(1,4) is Hamiltonian for all values of n except 6. See Fig.23 for a
Hamiltonian cycle in 7,(1,4), when n € {5,7,9}. These cycles are unique and
we use them to find a Hamiltonian path from 1 to 2 in 7,,(1, 4).

For any n = 0(mod 3), a suitable path is obtained by using the Hamiltonian cycle
in To(1, 4); see Fig. 24.

To obtain such a path when n = 1(mod 3), we use the Hamiltonian cycle found
in T7(1, 4); see Fig. 25.

For n = 2(mod 3), the cycle T5(1, 4) is employed; see Fig. 26.

Now, because of the symmetry of the Toeplitz graph, we also have a Hamiltonian
path fromn ton — 1. O
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Lemma 4. Let p, q be two distinct vertices of T, (1,4). If ¢ — p # 2,3,5, then
there exist paths P, 4 and P, , in T,(1,4).

Proof. See Lemma 3. O
Theorem 5. T,(1,4,s) is Hamiltonian connected for all s and n > 15.

Proof. For n > 15, let x and y be distinct vertices of the Toeplitz graph 7' =
T,(1,4,s). Assume that x < y. To prove the result we show that there exists a
Hamiltonian path between x and y.

Casel. y =x+1.
If x = 1orn — 1, we have a desired path due to Lemma 3.
When 5 < x < n — 5, then a Hamiltonian path between x and y is either
(x, Py—11, Pyn)or (Py1, Pyi1,,y) (see Fig. 27).
When 2 < x < 4, see Fig. 28 for a Hamiltonian path between x and y.
Forn — 4 < x < n — 2, the desired Hamiltonian paths are symmetric to the
paths for x € {2, 3,4}.
Case 2. If y # x + 1, the following three subcases arise:

() x<n—5andy€{3,4,...,n—5n—73}
(@) x<n—-5andye{n—4,n—-2,n—1,n}.
(itiy x > n—4.

Subcase (i). Lety € {3,4,...,n—5,n—3}.

(a) First, we assume the case when x € {4,6,7,...,n—5}. Now (Py41.1, X+
2, x+3,..., y—=2, P,_1,)is arequired Hamiltonian path between x
and y (see Fig. 29).

(b) If x = 1, then a desired path between 1 and y is shown in Fig. 30.
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Fig. 31 (a) A Hamiltonian path between 2 and 4. (b) A Hamiltonian path between 2 and 6. (c) A
Hamiltonian path between 2 and 7. (d) A Hamiltonian path between 2 and 8. (e) A Hamiltonian
path between 2 and y, where y > 9

Fig. 32

(c) If x = 2 and y # 5, then Hamiltonian paths between 2 and different
values of y are shown in Fig. 31.
When x = 2 and y = 5, to get a desired path, we use the difference
s along with differences 1 and 4. See Fig. 32, for such a path when s €
{8,9,10,...,n — 6,n — 4}.
When s = 5, 6,7, see Fig. 33.
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Fig. 35 (a) A Hamiltonian path between 3 and 5. (b) A Hamiltonian path between 3 and 6. (c) A
Hamiltonian path between 3 and y > 7

And, fors =n—5,n—-3,n—2,n—1, see Fig. 34

(d) If x = 3, then for a Hamiltonian path between 3 and y, see Fig. 35.

(e) If x = 5and y # 8, a desired Hamiltonian path is shown in Fig. 36.
When y = 8 and n # 15,17, we use the path shown in Fig.37. For
n = 15and n = 17, see Figs. 38 and 39, respectively.
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Fig. 38 Hamiltonian paths between 5 and 8 for different values of s, whenn = 15. (a) s = 5. (b)
s=6.(c)s=7.(d)s=8.(e)s=9.F)s=10.(g)s=11.(h)s =12. i) s = 13. (j) s = 14
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Fig. 39 Hamiltonian paths between 5 and 8 for different values of s, when n = 17. (a) s = 5. (b)
s=6.(c)s=7(d)s=8.()s=9Fs=10.(g)s =11.(h)ys =12. (1) s = 13. (j) s = 14.
k)s =151 s =16

Subcase (if). This subcase is symmetrical to x € {1,2,3,5} and y > 6. It was
treated inside of (i) except for the cases y =n —4,n —2,n — 1, n.
To obtain a Hamiltonian path from x € {1,2,3,5}toy € {n —4,n —
2,n — 1,n}, we first collect the four Hamiltonian paths in Tg(1, 4) from x €
{1,2,3,5} to 8; see Fig.40. Symmetrically, we have paths in T, (1, 4) from
yei{n—4,n—-2,n—1,n}ton—7,of vertex set {n —7,n—6,...,n}. Joining
8 to n — 7 by the direct path (8,9,...,n —7) gives the desired Hamiltonian path
in T, (1, 4) from x to y.
Subcase (iii). This subcase is symmetrical with y < 5, treated inside of (7).
O
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To see whether 7, (1, 4, s) is Hamiltonian connected or not, for 6 < n < 14, see
the following table:

Hamiltonian connected when s is

Te(1,4,s)

T7(1,4,s)

Ts(1,4,s) |5,7

To(1,4,s) |5,8

Tio(l,4,5) |5,6,7,9

Tu(l,4,s) |5.7,8, 10
Ti(l,4,s) 15,6789, 11
T13(1,4,s) |foralls

Tia(l,4,5s) 5,6,7,8,9,10, 11, 13

Missing values for s mean that the corresponding Toeplitz graph is not Hamilto-
nian connected. This was verified by using a computer.
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