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Abstract We use homological and geometrical methods to study the problem of
determining when a convex disk is trapped by four lines.

Keywords Convex disk · Trapped

1 Introduction

The problem of holding a convex body with a circle has been studied extensively by
several authors; see [1,2,6]. They studied the problem of determining when a convex
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body is trapped by a fixed circle. We are interested in this paper in the similar problem
of determining when a convex disk is trapped by four lines. Here, we use the term
convex disk with the meaning—used by the old Hungarian school—of a planar convex
body.

Let Ω be a finite collection of lines in Euclidean 3-space R
3 and let D ⊂ R

3 be a
convex disk with the property that the relative interior of D does not intersect any line
of Ω transversally. We say that D is trapped by Ω if D cannot be moved continuously
through infinity without the relative interior of D intersecting transversally a line of

Ω . For example, six lines determined by the 1-skeleton of a tetrahedron of side
√

3
2

always trap a circular disk of diameter slightly smaller than or equal to 1, but it is not
difficult to see that the union of three lines in R

3 does not trap a circular disk. The
purpose of this paper is to study the problem of determining when a convex disk is
trapped by four lines.

In Sect. 2, we use homology theory to find criteria under which a convex disk is
trapped by four lines. This enables us to prove, in Sect. 3, criteria in terms of the girth
map. The girth map measures the girth of a collection of lines with respect to a given
position of our convex disk. Section 4 is devoted to the notion of immobilization, and
shows that a strictly convex disk is trapped by four lines provided they immobilize a
quadrangle or a triangle.

Finally, we show in the last section that every convex disk with a C2 boundary can
be trapped by 4 lines.

2 Homological Characterization of the Case When a Convex Disk is Trapped by
Four Lines

Let SE(3) be the special Euclidean group of rigid motions of R
3 with subgroups

T (3), the group of translations, homeomorphic to R
3, and SO(3) of rotations in R

3,
homeomorphic to RP

3. In fact, SE(3) is the semi direct product of SO(3) with T (3),
but topologically SE(3) is homeomorphic to R

3 × SO(3).
From here on, let F be a convex disk in R

2 ⊂ R
3 that contains the origin in its

interior and let Γ be the subgroup of SE(3) consisting of all rigid motions that keep F
fixed; that is, Γ is the group of isometries of F . Then SE(3)/Γ represent all possible
positions of the convex disk F in R

3.
Let Ω = L1 ∪ L2 ∪ L3 ∪ L4 be a collection of four lines in R

3. Let Di be the
collection of disks of the shape of F , contained in R

3, whose relative interior intersects
Li transversally. That is,

Di = {γΓ ∈ SE(3)/Γ | the relative interior of γ F intersects Li transversally} .

Note that each Di is open in SE(3)/Γ . Let D(Ω) = D1∪D2∪D3∪D4. We are interested
in the compact components of SE(3)/Γ − D(Ω); that is, a copy of the convex disk F
is trapped by the lines Ω = {L1, L2, L3, L4} if and only if SE(3)/Γ − D(Ω) has a
compact component.

Now let p : X → X be a fiber bundle with compact fiber and let U be an open subset
of X . It is easy to see that X −U has a compact component if and only if X − p−1(U )
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has a compact component. So SE(3)/Γ −D(Ω) has a compact component if and only
if SE(3) − D(Ω) has a compact component, where now

Di = {γ ∈ SE(3) | the relative interior of γ F intersects Li transversally} ,

and D(Ω) = D1 ∪ D2 ∪ D3 ∪ D4. Note that every Di is an open subset of R
3 ×SO(3)

and hence D(Ω) is also an open subset of R
3 × SO(3). Then by Lemma 1 below, a

copy of the convex disk F is trapped by the lines of Ω = {L1, L2, L3, L4} if and only
if

H5(D(Ω)) �= 0.

Similarly, a copy of the convex disk F is trapped by the lines {L1, L2, L3} if and only
if

H5(D1 ∪ D2 ∪ D3) �= 0.

In this paper we always use Cech homology groups with Z2 coefficients.

Lemma 1 Let U ⊂ R
3 × SO(3) be an open set. Then the complement of U has a

compact component if and only if H5(U ) �= 0.

Proof First note that R
3×S3 is a double covering of R

3×SO(3), where S3 denotes the
unit sphere of R

4. For a double covering map π : X → Y , Y is compact (H5(Y ) = 0)

if and only if X is compact (respectively H5(X) = 0). Hence, we shall prove our
lemma replacing SO(3) by S3. The strategy of the proof is to use the fact that, for an
open subset U ⊂ R

n , the complement of U in R
n has a bounded component if and

only if Hn−1(U ) �= 0. We shall consider R
3 × S3 to be an open subset of R

6. In fact,
R

3 × S3 is homeomorphic to R
6 − L , where L is a two-dimensional affine plane. This

is so because R
3 × S3 = R

2 × (R × S3) homeomorphic to R
2 × (R4 − {0}) ⊂ R

6.
Now let U ⊂ R

6 − L be an open set. Then (Rn − L) − U has a compact component
if and only if R

n − U has a compact component if and only if H5(U ) �= 0. �	
The following technical lemma will be useful.

Lemma 2 Let L1, L2, L3, L4 be four lines in R
3 and let F be a convex disk in R

2 ⊂ R
3

that contains the origin in its interior. If Di = {γ ∈ SE(3) | the relative interior of
γ F intersects Li transversally}, i = 1, 2, 3, 4, then

1. For k = 1, 2, 3, 4, let π :
k⋂

1
Di → π(

k⋂

1
Di ) be the restriction of the projection

map Π : R
3 × SO(3) → SO(3).

Then π is a homotopy equivalence.
2. Hj (Di ) = 0, for j ≥ 4, i = 1, 2, 3, 4.

3. Hj (
k⋂

1
Di ) = 0, for j ≥ 3 and k = 2, 3, 4.

4. Hj (D1 ∪ D2) = 0, for j ≥ 4.
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5. Hj (D1 ∩ (D2 ∪ D3)) = 0, for j ≥ 4.
6. H5(D1 ∪ D2 ∪ D3 ∪ D4) = H4([D1 ∪ D2] ∩ [D3 ∪ D4]).

Proof We want to prove that π is a homotopy equivalence by proving that the
fibers π−1(γ ) are contractible. Let γ0 ∈ Π(Di ) ⊂ SO(3). We will consider
Π−1(γ0) ∩ Di = {x ∈ R

3 | the relative interior of x + γ0 F intersects Li trans-
versely} = relint(γ0 F) × Li , which is convex and hence contractible. For k =
1, 2, 3, 4, let us consider π−1(γ0), where π :

k⋂

1
Di →π(

k⋂

1
Di ) is the restriction of the

projective map Π : R
3 × SO(3) → SO(3). Therefore π−1(γ0) = Π−1(γ0)∩

k⋂

1
Di =

k⋂

1
(Π−1(γ0) ∩ Di ), which is the intersection of k convex cylinders and hence it is

contractible.
Now (2) follows from the fact that π(Di ) = SO(3), and therefore Di has the

homotopy type of SO(3). Similarly, (3) follows from the fact that for k = 2, 3, 4,

π(
k⋂

1
Di ) is properly contained in SO(3). The Mayer–Vietoris sequence of the pair

(D1, D2) together with (2) and (3) implies (4). Now (5) follows from the Mayer–
Vietoris sequence of the pair ((D1 ∩ D2); (D1 ∩ D3)) and (3). Finally, (6) follows
from the Mayer–Vietoris sequence of the pair ((D1 ∪ D2); (D3 ∪ D4) and 4). �	

In the case in which we have only three lines, a copy of the convex disk F is trapped
by {L1, L2, L3} if and only if

H5(D1 ∪ D2 ∪ D3) �= 0.

By the Mayer–Vietoris exact sequence of the pair (D1, D2 ∪ D3), and Lemma 2(3, 4)

H5(D1 ∪ D2 ∪ D3) = H4(D1 ∩ (D2 ∪ D3)) = 0.

Thus three lines never trap a convex disk. The same conclusion can also be obtained
using only geometric arguments.

Let us consider the following commutative diagram where the first row corresponds
to the Mayer–Vietoris sequence of the pair (D1 ∩ [D3 ∪ D4]; D2 ∩ [D3 ∪ D4]), the
second row corresponds to the Mayer–Vietoris sequence of the pair (D1 ∩ D3 ∩
D4; D2 ∩ D3 ∩ D4), the third row corresponds to the Mayer–Vietoris sequence of
the pair (D1 ∩ D3; D2 ∩ D3) and the fourth row corresponds to the Mayer–Vietoris
sequence of the pair (D1 ∩ D4; D2 ∩ D4).
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Similarly, the first column corresponds to the Mayer–Vietoris sequence of the pair
([D1 ∪ D2] ∩ D3; [D1 ∪ D2] ∩ D4), the second column corresponds to the Mayer–
Vietoris sequence of the pair (D1 ∩ D2 ∩ D3; D1 ∩ D2 ∩ D4), and the third column
corresponds to the Mayer–Vietoris sequences of the pairs (D1 ∩ D3; D1 ∩ D4) and
(D2 ∩ D3; D2 ∩ D4).

Lemma 3 There is a copy of the convex disk F trapped by the lines L1, L2, L3, L4
if and only if in the commutative diagram above H4([D1 ∪ D2] ∩ [D3 ∪ D4]) �= 0
precisely when there is 0 �= α ∈ H2(D1 ∩ D2 ∩ D3 ∩ D4) such that i∗(α) = 0 = j∗(α).

Proof We know that there is a copy of the convex disk F trapped by the lines L1,
L2, L3 and L4 if and only if H5(D1 ∪ D2 ∪ D3 ∪ D4) �= 0 if and only if H4([D1 ∪
D2] ∩ [D3 ∪ D4]} �= 0. Let 0 �= x ∈ H4([D1 ∪ D2] ∩ [D3 ∪ D4]). By the exactness
of the diagram above, ∂1 and ∂2 are monomorphic, which implies that ∂1(x) �= 0 and
∂2(x) �= 0. Again, by the exactness of the diagram above, ∂3 and ∂4 are monomorphic,
which implies that 0 �= α = ∂3∂1(x) = ∂4∂2(x). Furthermore, by exactness i∗(α) =
i∗∂3∂1(x) = 0 and j∗(α) = j∗∂4∂2(x) = 0. Conversely, suppose that there is 0 �=
α ∈ H2(D1 ∩ D2 ∩ D3 ∩ D4) such that i∗(α) = 0 = j∗(α). By exactness, there is
β ∈ H3([D1 ∪ D2] ∩ [D3 ∩ D4]) and γ ∈ H3([D1 ∩ D2] ∩ [D3 ∪ D4]) such that
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∂3(β) = ∂4(γ ) = α. So, (∂5⊕∂6)k∗(β) = 0 and similarly (∂7⊕∂8)ρ∗(γ ) = 0. Hence,
again by exactness in the third and fourth row, k∗(β) = 0 and by exactness in the third
column ρ∗(γ ) = 0. Finally, this implies that there is x ∈ H4([D1 ∪ D2] ∩ [D3 ∪ D4])
such that ∂1(x) = β. �	
The following useful lemma follows immediately from Lemma 3 and the fact that
π is a homotopy equivalence. First some notation. Let O = D1 ∩ D2 ∩ D3 ∩ D4,
O1 = D2 ∩ D3 ∩ D4, O2 = D1 ∩ D3 ∩ D4, O3 = D1 ∩ D2 ∩ D4, O4 = D1 ∩ D1 ∩ D3.

Lemma 4 There is a copy of the convex disk F trapped by the lines L1, L2, L3, L4

if and only if there is 0 �= α ∈ H2(π(O)) such that for j = 1, 2, 3, 4, i j∗ (α) = 0 ∈
H2(π(O j )), where i j : π(O) → π(O j ) denotes the inclusion.

3 The Girth Map Ψ

Let Υ be a finite collection of lines and let W = {γ ∈ SO(3) | γ (R2) is an affine
plane parallel to a pair of non intersecting lines of Υ }. Thus W consists of a finite set
of pairwise disjoint curves {C1, . . . , Cλ} in SO3. Let SO3

Υ = SO(3) − W . The girth
map

ΨΥ : SO3
Υ → (0,∞)

is the continuous map defined as follows: for every γ ∈ SO3
Υ , let ΨΥ (γ ) be the

smallest positive real number t such that a translated copy of tγ F intersects all lines
of Υ . Note that the girth map ΨΥ is continuous because Ψ −1

Υ ((0, h)) is open in
SO3

Υ and Ψ −1
Υ ((0, h]) is closed in SO3

Υ . Note also that ΨΥ (γ ) tends to infinity when
γ tends to one of the curves Ci . In our setting, for brevity let us denote ΨΩ by
Ψ , where Ω = {L1, L2, L3, L4}; and ΨΩ−{L j } by Ψ j , i = 1, 2, 3, 4. Note that
π(O) = Ψ −1((0, 1)).

The purpose of the following theorems is to characterize a convex disk trapped by
the lines {L1, L2, L3, L4}. We first need a definition.

Let Λ ⊂ SO3
Ω be a compact set. We say that Ψ has a local maximum h0 at Λ if

there is an open neighborhood U of Λ in SO3
Ω such that Ψ (γ ) = h0 for every γ ∈ Λ,

and Ψ (γ ) < h0 for every γ ∈ U − Λ.

Theorem 1 Suppose there is a copy of the convex disk F trapped by the lines of
Ω = {L1, L2, L3, L4}. Then there is a local maximum h0 ≥ 1 of the girth map Ψ at
Λ ⊂ SO3

Ω such that for j = 1, 2, 3, 4, Ψ j (γ ) < 1 for every γ ∈ Λ.

Proof An open set U ⊂ SO3
Ω has a compact component if and only if there is 0 �=

α ∈ H2(U ) such that for i∗(α) = 0 ∈ H2(SO3
Ω), where i j : U → SO3

Ω denotes the
inclusion.

Suppose there is a copy of the convex disk F trapped by the lines L1, L2, L3 and L4,
so that by Lemma 4, there is 0 �= α ∈ H2(π(O)) such that α is zero in H2(π(O j )),
and hence is zero in H2(SO3

Ω), because π(O j ) ⊂ SO3
Ω . Then SO3

Ω − π(O) has a
compact component. We know that π(O) = Ψ −1((0, 1)), so SO3

Ω − Ψ −1((0, 1)) has
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a compact component T ⊂ π(O j ), for j = 1, 2, 3, 4, which implies that Ψ has a local
maximum h0 ≥ 1 at Λ ⊂ T and for j = 1, 2, 3, 4, Ψ j (γ ) < 1 for every γ ∈ Λ. �	

Concerning Theorem 1, note that the local maximality of Ψ may be attended at
several positions. The second technical condition means that the local maximality is
really a property of the 4 lines and not of 3 of them.

Theorem 2 Suppose there is a local maximum h0 of the map Ψ at Λ ⊂ SO3
Ω such

that for j = 1, 2, 3, 4, Ψ j (γ ) < h0 for every γ ∈ Λ. Then there exists ε > 0 such
that for every h1 ∈ (h0 − ε, h0] there is a copy of the convex disk h1 F trapped by the
lines of Ω = {L1, L2, L3, L4}.
Proof Since Ψ has a local maximum h0 at Λ, there is an open neighborhood U of Λ

in SO3
Ω such that Ψ (γ ) = h0 for every γ ∈ Λ, and Ψ (γ ) < h0 for every γ ∈ U − Λ.

In fact, we may choose U and ε > 0 in such a way that h0 −ε < Ψ (γ ) ≤ h0 for every
γ ∈ U . On the other hand, since Ψ j (γ ) < h0 for every γ ∈ Λ, ε > 0 is also chosen
in such a way that Ψ (γ ) < h0 − ε, for every γ ∈ U , j = 1, 2, 3, 4. This means that
for every γ ∈ U and j = 1, 2, 3, 4, the lines of Ω − L j transversally intersect the
relative interior of a translated copy of (h0 − ε)γ F .

Let h1 ∈ (h0 − ε, h0]. We use Lemma 4, but now with h1 F playing the role
of F . This time π(O) = Ψ −1((0, h1)) and U ⊂ π(O j ) for j = 1, 2, 3, 4. Then
SO3

Ω − Ψ −1((0, h1)) has a compact component T
′ ⊂ U ⊂ π(O j ), which implies the

existence of 0 �= α ∈ H2(π(0)) which is zero in H2(π(O j )) for j = 1, 2, 3, 4. �	

4 Immobilization and Imprisonment

First we give two important definitions.
Let Ω be a finite collection of lines in R

3 and let D ⊂ R
3 be a convex disk with the

property that the relative interior of D does not intersect any line of Ω transversally.
We say that Ω immobilizes D if any small rigid movement of D causes a line of Ω to
penetrate the interior of D transversally.

For immobilization of convex bodies, see [3,4].

Remark If a convex disk is immobilized by the lines of Ω then it is also trapped, In
fact, this case corresponds to the case in Theorems 1 and 2 in which the girth function
has an isolated local maximum.

Let again Ω be a finite collection of lines in R
3 and let D ⊂ R

3 be a convex
disk with the property that the relative interior of D does not intersect any line of Ω

transversally and every line of Ω intersects D. We say that Ω imprisons D if after any
small rigid movement of D, D is still intersecting all the lines of Ω .

While it is true that if a convex disk is immobilized by the lines of Ω then it is also
trapped, the same is not necessarily true for imprisonment. That is, a convex disk may
by imprisoned by Ω but not trapped.

Let γ0 F be a copy of the convex disk F trapped by the lines of Ω =
{L1, L2, L3, L4}, where γ0 ∈ SE(3), and let h1δF be a similar copy of F , where
h1 ≥ 1 and δ ∈ SE(3). We write γ0 F ∼ h1δF if there are continuous functions
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h : [0, 1] → [1,∞) and γ : [0, 1] → SE(3) such that for every t ∈ [0, 1], the relative
interior of the convex disk h(t)γ (t)F does not intersect a line of Ω transversally, and
furthermore h(0) = 1, γ (0) = γ0, h(1) = h1 and γ (1) = γ . The fact that γ0 F is
trapped by the lines of Ω implies that γ (t)F is also trapped by the lines of Ω , and
hence that h(t) is bounded; otherwise, if for some t0 ∈ [0, 1], h(t0) is too big, then
γ (t0)F can escape from Ω inside γ (t)R2. Let

h1 = Max{h ≥ 1 | γ0 F ∼ hδF}.

Lemma 5 Suppose the convex disk γo F is trapped by the lines of Ω = {L1, L2,

L3, L4}. Then for every γ0 F ∼ h1δF, the convex disk h1δF is imprisoned by the lines
of Ω = {L1, L2, L3, L4}.
Proof We start by proving that for every disk h1δF such that γ0 F ∼ h1δF , we
have that the lines of Ω intersect h1δF . Suppose they do not. Since h1δF is trapped
by Ω , then at least three of the lines, say {L1, L2, L3}, intersect h1δF , but L4 ∩
h1δF = φ. Since a convex disk is never trapped by three lines, the disk h1δF can be
moved continuously through infinity without the relative interior of h1δF transversally
intersecting a line of {L1, L2, L3}. During this motion, before these copies of h1δF
touch L4 again, they cannot avoid touching one of the lines of {L1, L2, L3}, otherwise
it would contradict the maximally of h1. This implies that the disk h1δF is imprisoned
by {L1, L2, L3}; but it is easy to see, using only simple geometric arguments, that this
is impossible. Consequently, the lines of Ω intersect h1δF . Therefore, any small rigid
movement of h1δF maintains h1δF intersecting all lines of Ω . �	
Corollary 1 There is a copy of a convex disk F that is trapped by the lines Ω =
{L1, L2, L3, L4}, provided there is a homothetic copy to F imprisoned by Ω .

Theorem 3 There is a strictly convex disk trapped by the lines of Ω = {L1, L2,

L3, L4}, provided they immobilize a quadrangle or a triangle.

Proof Let F ⊂ R
2 be a strictly convex disk. If there is a copy of F trapped by the

lines of Ω , by Corollary 1 we may assume without loss of generality that there is
γ ∈ SE(3) such that γ F is imprisoned by Ω = {L1, L2, L3, L4}. We have two cases
to analyze:

(a) the line Li transversally intersects γ R
2 at xi ∈ bdγ F , j = 1, 2, 3, 4, and

{x1, x2, x3, x4} immobilize γ F in the plane in γ R
2, or

(b) the line Li transversally intersects γ R
2 at xi ∈ bdγ F , j = 1, 2, 3, L4 ⊂ γ R

2

intersects the relative interior of γ F , and {x1, x2, x3} immobilize γ F in the plane
in γ R

2.

In the first case let C be the quadrangle whose sides �i are contained in the support
lines of γ F at xi , i = 1, 2, 3, 4. In the second case C is a triangle whose sides �i are
contained in the support lines of γ F at xi , i = 1, 2, 3. Note that in both cases C is
imprisoned by Ω . We shall now prove that C is immobilized by Ω .

Let � be a small compact neighborhood of the identity in SE(3) with the property
that for every ζ ∈ �, ζC intersects the lines of Ω . Let P = {ζ ∈ � | the lines of
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Ω intersect the boundary of C}. We shall prove that P = {Id}, thus proving that C is
immobilized.

In the first case, for every ζ ∈ �, and i = 1, 2, 3, 4, let xζ
i ∈ bdC be the point with

the property that ζ xζ
i ∈ ζC belongs to Li . We may assume without loss of generality

that xζ
i ∈ �i , i = 1, 2, 3, 4. Since γ0 F is imprisoned by Ω , the disk ζγ0 F intersects

the lines of Ω at the boundary and hence, since this disk is strictly convex, we have
that xζ

i = xi for every ζ ∈ Λ, i = 1, 2, 3.
The quadrangle K with vertices {x1, x2, x3, x4} has the property that it can be

moved through small rigid movements in such a way that the vertices {x1, x2, x3, x4}
are moved along the lines L1, L2, L3 and L4 respectively. By [5, Theorem 2], either
the four lines are parallel or there is a line � that these four lines intersect perpendic-
ularly. Under these circumstances, it is not difficult to check directly that γ0 F is not
imprisoned by Ω; in the first case by translating the disk in the direction of the four
lines and in the second case by translating the disk away from the line � in the opposite
direction. In either case, this is a contradiction. Therefore, we have that Λ = {Id}, and
hence that C is immobilized by Ω .

Similarly, in the second case, the triangle K with vertices {x1, x2, x3} can be moved
through small rigid movements along the respective lines, while the relative interior
of K slides along L4. Again, this is impossible unless Λ = {Id}. This proves that C
is immobilized by Ω . �	

5 Trapping a Convex Disk with 4 Lines

Let D be the circular disk {(x, y, z) : x2 + y2 ≤ 1, z = 0}. Take the points a =
(ax , bx , 0), b = (bx , by, 0), c = (cx , cy, 0) on bdD, at mutual distances 2π/3 (mea-
sured on bdD).

Notice that, in the plane z = 0, D cannot move far from its position without meeting
the set {(101/100)a, (101/100)b, (101/100)c}.

Consider the points

a′ = ((101/100)ax , (101/100)ay,−ε), b′ = ((101/100)bx , (101/100)by,−ε),

c′ = ((101/100)cx , (101/100)cy, 200ε).

For any ε > 0, the line a′b′ lies below D and the lines a′c′, b′c′ above D. For ε very
small, the line cc′ goes below D and very close to it. So, the lines a′b′, b′c′, a′c′ and
cc′ trap D.

Theorem 4 Every convex disk with a C2 boundary is trapped by 4 lines.

Proof By Theorem 3 in [4], every convex disk D ⊂ R
2 with a C2 boundary can be

immobilized in R
2 by 3 suitably chosen points.

By using the same construction as in the example above, we find 4 lines trapping
D in R

3. �	
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